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Introduction* In § § 1 and 2 of this paper we consider an arbitra-
rily shaped membrane of variable density and uniform tension. We
assume that this nonhomogeneous membrane is stretched in a given
frame and obtain bounds for its principal frequency (fundamental tone).
Before describing our results we quote the analogous result for the
nonhomogeneous string proved in a paper by P. R. Beesack and the
author [1, Theorem 2].

Let p(x) be continuous and not identically zero for — XQ<^X<LX0,

O<^#o<C°°> wnd let P+(x) wnd p~{x) be the rearrangement of p(x) in sym-
metrically increasing respectively decreasing order. Consider the three
differential systems

y"{x) + λp{x)y{x) = 0 , y{ ± x0) = 0

u"(x) + λ+p+(x)u(x) = 0 , u(±xo)=O ;

v"(x)+λ-p-(x)v(x)=0 , v(±xQ)=0 :

denote their least positive eigenvalues also by λ, λ+ and λ~ respectively.
Then λ~<Lλ even if p(x) changes sign finitely often while λ<Lλ+ holds if

For the nonhomogeneous membrane we consider a domain D bounded
by a Jordan curve C. The differential system (for the original density)
is given by

Δu(x, y) + λp(x, y)u(x, y)=0

for (x, y) in D and u(C)=0. We base the existence of the first eigen-
f unction and its minimum property on the classical treatment of Courant-
Hilbert [3, vol. 2, Chapter VII]. We assume therefore that p(x, y) is

positive and continuous in D and has continuous first derivatives in D.

Together with p(x, y) we consider its rearrangements in symmetrically

increasing respectively decreasing order. The symmetrization is with

respect to a point: p+(x, y)=p+(r) and p~(x, y)=p-(r) are defined in

a closed disk JD* of the same area as D. The properties of p{x, y) imply

that p+(xf y) and p~(x, y) are positive and continuous in J9*. However,
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