BOUNDS FOR THE PRINCIPAL FREQUENCY OF THE NONHOMOGENEOUS MEMBRANE AND FOR THE GENERALIZED DIRICHLET INTEGRAL

BINYAMIN SCHWARZ

Introduction. In §§ 1 and 2 of this paper we consider an arbitrarily shaped membrane of variable density and uniform tension. We assume that this nonhomogeneous membrane is stretched in a given frame and obtain bounds for its principal frequency (fundamental tone). Before describing our results we quote the analogous result for the nonhomogeneous string proved in a paper by P. R. Beesack and the author [1, Theorem 2].

Let p(x) be continuous and not identically zero for $-x_0 \leq x \leq x_0$, $0 < x_0 < \infty$, and let $p^+(x)$ and $p^-(x)$ be the rearrangement of p(x) in symmetrically increasing respectively decreasing order. Consider the three differential systems

$y^{\prime\prime}(x) + \lambda p(x)y(x) = 0 ,$	$y(\pm x_{\scriptscriptstyle 0})\!=\!0$;
$u''(x) + \lambda^{+} p^{+}(x)u(x) = 0$,	$u(\pm x_{\scriptscriptstyle 0}) {=} 0$;
$v^{\prime\prime}(x) + \lambda^{-} p^{-}(x) v(x) = 0 ,$	$v(\pm x_0) = 0:$

denote their least positive eigenvalues also by λ , λ^+ and λ^- respectively. Then $\lambda^- \leq \lambda$ even if p(x) changes sign finitely often while $\lambda \leq \lambda^+$ holds if $p(x) \geq 0$.

For the nonhomogeneous membrane we consider a domain D bounded by a Jordan curve C. The differential system (for the original density) is given by

$$\Delta u(x, y) + \lambda p(x, y)u(x, y) = 0$$

for (x, y) in D and u(C)=0. We base the existence of the first eigenfunction and its minimum property on the classical treatment of Courant-Hilbert [3, vol. 2, Chapter VII]. We assume therefore that p(x, y) is positive and continuous in \overline{D} and has continuous first derivatives in D. Together with p(x, y) we consider its rearrangements in symmetrically increasing respectively decreasing order. The symmetrization is with respect to a point: $p^+(x, y)=p^+(r)$ and $p^-(x, y)=p^-(r)$ are defined in a closed disk \overline{D}^* of the same area as D. The properties of p(x, y) imply that $p^+(x, y)$ and $p^-(x, y)$ are positive and continuous in \overline{D}^* . However,

Received December 28, 1956. The author wishes to thank Dr. P. R. Beesack of Mc-Master University, Hamilton and Professor E. Netanyahu of the Technion, Haifa for many helpful remarks in the preparation of this paper.