ON SEMI-NORMAL OPERATORS

C. R. PUTNAM

1. A bounded linear operator A in a Hilbert space will be called semi-normal if

(1)
$$H = AA^* - A^*A \ge 0 \text{ (or } \le 0).$$

If A is a finite matrix, for instance, then relation (1) implies H=0, so that A is even normal; cf., e.g., [4]. That (1) may hold with $H\neq 0$ is seen if one chooses, for instance, A to to the isometric matrix defined by $A=D=(d_{ij})$ where $d_{i+1,i}=1$ and $d_{ij}=0$ otherwise. The purpose of this note is to investigate the spectrum of the semi-normal operator A and of the associated self-adjoint operators J_{θ} defined by

(2)
$$J_{\theta} = \frac{A_{\theta} + A_{\theta}^{*}}{2}$$
, $A_{\theta} = Ae^{-i\theta}$ (θ real).

It is seen that, in particular, J_{θ} becomes the real or the imaginary part of A according as $\theta = 0$ or $\theta = \pi/2$.

A number λ belonging to the spectrum of A (sp (A)) will be called accessible if there exists a sequence of numbers λ_n not belonging to sp (A) for which $\lambda_n \rightarrow \lambda$ as $n \rightarrow \infty$. If M is any self-adjoint operator, max M and min M will denote the greatest and the least points respectively of the set sp (M).

The following theorems will be proved:

THEOREM 1. Let A be semi-normal with $H \ge 0$ and let $\lambda = re^{i\theta}$ (r real, ≥ 0) be an accessible point of the spectrum of A. Then

$$(3) \qquad (\max J_{\theta})^2 \ge \min AA^*$$

and

(4)
$$|r - \max J_{\theta}| \leq ((\max J_{\theta})^2 - \min AA^*)^{1/2}$$
,

where J_{θ} is defined by (2).

THEOREM 2. Let A be semi-normal and let $J=J_{\theta}$ have the spectral resolution $J=\int \lambda dE$. Then, if $S=S_{\theta}$ is any measurable set for which

$$\int_{S} dE = I$$

Received March 6, 1957. This research was supported in part by the United States Air Force under Contract No. AF 18 (603)-139.