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In the following paper we will study the nonlinear integral equation

( 1 ) E(t)=F(t)-^G(t-τ)N{E(τ)} dτ

where F{t) is a known periodic real function and G{t) and N(x) are
known real functions. In particular we will investigate the behaviour
of the solution E{i) of the equation (1) for large values of t.

We assume that GeL[0, oo] and that N(x) is bounded almost
everywhere and Borel-measurable in [—00, 00]. Furthermore N(x) is
assumed expressible in the form

(2) N(x)~N(O)+\+~S(t)'
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|S(/l)|cZΛ<co and with finite N(0). This representation is to be

valid almost everywhere in [ — 00, 00 ]
Because N(x) is Borel-measurable in [—00, 00] and |iV(0)|<oo, the

measurability of x implies the measurability of N(x). The following
four classes of iV(#)-functions are distinguished :

( 3 )

The space of measurable and bounded functions defined on the
finite interval [0, A] will be denoted by M[0, A]. The norm of
xeM[0, A] is defined, as usual, by
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where E ranges over the sets of measure zero in [0, A], and the
distance of xeM[0, A] and yeM[0, A] by \\x—y\\. The space M[0, 1]
is complete.

The proofs in this paper will be based on the following theorem by
Tihonov (see for instance [1]) which is valid in M[0, A]: Let the operator
B map M[0, A] into itself and let \\B(x)-B(y)\\^β\\x~y\\ for all x and
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