EXTREME POINTS AND EXTREMUM PROBLEMS IN H_1

KAREL DE LEEUW AND WALTER RUDIN

The class H_1 consists of all functions f which are analytic in the open unit disc, and for which

$$||f|| = \sup_{0 < r < 1} rac{1}{2\pi} \int_0^{2\pi} |f(re^{i heta})| d heta$$

is finite. With this norm, H_1 is a Banach space, whose unit sphere will be denoted by S; that is, S is the set of all $f \in H_1$ with $||f|| \leq 1$.

We are concerned in this paper with (a) the identification of the extreme points of S and some geometric properties of the set of these extreme points, (b) the closure of Pf (the set of all functions of the form $p \cdot f$, where p ranges over the polynomials and f is a fixed function in H_1 in various topologies, and (c) the structure of the set of those $f \in S$ which maximize a given bounded linear functional on H_1 .

We find that the factorization $f = M_f Q_f$ (see Lemma 1.3), which was apparently first used by Beurling [1], is of basic importance in these problems.

Our results are summarized at the beginning of Sections II, III, and IV.

We wish to acknowledge several helpful conversations with Halsey Royden.

I. PRELIMINARIES

1.1 Let C be the boundary of the open unit disc U in the complex plane. If $f \in H_1$, then $f(e^{i\theta})$, which we define to be $\lim_{r \to 1} f(re^{i\theta})$, exists almost everywhere on C and differs from 0 for almost all $e^{i\theta}$, unless f is identically 0. Moreover, the one-to-one correspondence between an $f \in H_1$ and its boundary function is an isometric embedding of H_1 in L_1 , the Banach space of all Lebesgue integrable functions on C, normed by

(1.1.1)
$$||f|| = \frac{1}{2\pi} \int_{-\pi}^{\pi} |f(e^{i\theta})| d\theta .$$

Thus (1.1.1) may be taken as the norm in H_1 . We also have

(1.1.2)
$$\lim_{r \to 1} \int_{-\pi}^{\pi} |f(re^{i\theta}) - f(e^{i\theta})| d\theta = 0$$

Received February 13, 1958. The second author is a Research Fellow of the Alfred P. Sloan Foundation.