LINEAR INEQUALITIES AND QUADRATIC FORMS

JERRY W. GADDUM

- 1. Introduction. There are known criteria for a quadratic form to be positive definite, and criteria for a system of linear inequalities to have a solution. In this paper the two problems are shown to be related. The principal theorem is Theorem 5.1.
 - 2. Definitions and Notation. We will consider a quadratic form

$$Z(x) \equiv \sum_{1}^{n} a_{ij} x_i x_j$$
, with $a_{ij} = a_{ji}$,

and ask whether it is positive in the first orthant, i.e., whether it is positive for non-negative values of the x_i .

If Z(x) > 0 for $x \ge 0$, we call it conditionally definite and if $Z(x) \ge$ for $x \ge 0$, we call it conditionally semi-definite. (Since we will only be concerned with positive definiteness, we will omit the word "positive" throughout the paper.) Finally, if $Z(x) \ge 0$ when $x \ge 0$ and Z(x) > 0 when x > 0, we call Z(x) conditionally almost-definite.

As a matter of notation, we recall that $Ax \ge 0$ or $x \ge 0$ means that at least one component of the vector in question is positive.

In discussing Z(x) we shall have occasion to refer to the form obtained by setting $x_{k_1}, x_{k_2}, \dots, x_{k_s}$ equal to zero, that is, the form

$$\sum_{i,j\neq k_1,\cdots,k_s} a_{ij} x_i x_{ij} .$$

We shall call this a principal minor of Z(x) and denote it $Z_{k_1...k_s}(x)$. In referring to the corresponding matrix, $A^{k_4...k_s}$ we will assume x has the appropriate number of components when we write $A^{k_1...k_s}x$.

3. Quadratic forms in the first orthant. We first prove a theorem which is not strictly necessary but may be some intrinsic interest. It concerns the game whose matrix is $A=(a_{ij})$ and whose value is v. (For completeness we remind the reader of the following definition of the value v of a game with matrix $B=(b_{ij}), i=1, \cdots, m; j=1, \cdots, n$. Let X be the set of vectors $x=(x_1, \cdots, x_m)$ with $x_1 \geq 0$ and $\sum_{i=1}^m x_i = 1$; Y the set of $y=(y_1, \cdots, y_n)$ with $y_j \geq 0$ and $\sum_{i=1}^n y_j = 1$. Then it can be shown that

$$\max_{x \in X} \min_{y \in Y} \sum b_{ij} x_i y_j = \min_{y \in Y} \max_{x \in X} \sum b_{ij} x_i x_j$$
 ,

and this quantity is called the value of the game with matrix B).

Received December 9, 1957.