ON THE DETERMINATION OF NUMBERS BY THEIR
SUMS OF A FIXED ORDER

J. L. SELFRIDGE AND E. G. STRAUS

1. Introduction. We wish to treat the following problem (suggested
by a problem of L. Moser [2]):

Let {«} = {wx, ---,2,} be a set of complex numbers (if one is
interested in generality, one may consider them elements of an algebra-
ically closed field of characteristic zero) and let {¢} = {oy, «- -, 0'(?)} be

the set of sums of s distinct elements of {x}. To what extent is {x}
determined by {s} and what sets can be {o} sets?

In §2 we answer this question for s =2. In §3 we treat the
question for general s.

2. The case s = 2.

THEOREM 1. If n =+ 2% then the first n elementary symmetric func-
tions of {o} can be prescribed arbitrarily and they determine {x} uniquely.

Proof. Instead of the elementary symmetric functions we consider
the sums of powers, setting
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Expanding the binomials and collecting like powers we obtain
k
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Thus, since the coefficient of S, does not vanish, we can solve re-

" Received May 16, 1958.

847



