SUBDIRECT SUMS AND INFINITE ABELIAN GROUPS

ELBERT A. WALKER

1. Definitions. Let G be a group, and suppose G is a subgroup of the direct sum $\sum_{a \in I} \bigoplus H_a$ of the collection of groups $\{H_a\}_{a \in I}$. If the projection of G into H_a is onto H_a for each $a \in I$, then G is said to be a subdirect sum of the groups $\{H_a\}_{a \in I}$. (Only weak direct and subdirect sums are considered here.) If a group G is isomorphic to a subdirect sum of the groups $\{H_a\}_{a \in I}$, then G is said to be represented as a subdirect sum of the groups $\{H_a\}_{a \in I}$. A group is called a rational group if it is a subgroup of a $Z(p^{\infty})$ group or a subgroup of the additive group of rational numbers.

2. THEOREM. Every Abelian group can be represented as a subdirect sum of rational groups where the subdirect sum intersects each of the rational groups non-trivially.

Proof. G is isomorphic to a subgroup of some divisible group, and thus can be represented as a subdirect sum G' of rational group $\{H_a\}_{a \in I}$. Let $(h_1, h_2, \dots, h_a, \dots)$ be an element of G'. Let $(h_1, h_2, \dots, h_a, \dots)\beta_1 = (k_1, h_2, \dots, h_a, \dots)$, where $k_1 = h_1$ if $G' \cap H_1 \neq 0$, and $k_1 = 0$ if $G' \cap H_1 = 0$. Assume β_c has been defined for c < b. Define

$$(h_1, h_2, \dots, h_a, \dots)\beta_b = (k_1, k_2, \dots, k_b, h_{b+1}, \dots)$$

where $k_b = h_b$ if $H_b \cap (\bigcup_{c < b} G' \beta_c) \neq 0$, and $k_b = 0$ otherwise. Each β_a preserves addition because each is a projection. Let $(h_1, h_2, \dots, h_a, \dots) \neq (0, 0, \dots, 0, \dots)$ and let

$$(h_1, h_2, \cdots, h_a, \cdots)\beta_a = (k_1, k_2, \cdots, k_a, h_{a+1}, h_{a+2}, \cdots)$$

Only a finite number of the coordinates of $(h_1, h_2, \dots, h_a, \dots)$ are not 0. Let them be $h_{a_1}, h_{a_2}, \dots, h_{a_n}$, where $a_1 < a_2 < \dots < a_n$. If $a < a_n$, then

$$egin{aligned} &(h_1,\,h_2,\,\cdots,\,h_a,\,\cdots)eta_a\ &=(k_1,\,k_2,\,\cdots,\,k_a,\,h_{a+1},\,\cdots,\,h_{a_n},\,h_{a_n+1},\,\cdots)
eq(0,\,0,\,\cdots,\,0,\,\cdots) \end{aligned}$$

since $h_{a_n} \neq 0$. Assume $a \ge a_n$. If n=1 and $a_1=1$, then $(h_1, h_2, \dots, h_a, \dots) = (h_{a_1}, 0, 0, \dots, 0, \dots) \in G'$ and $G' \cap H_1 \neq 0$ so that $(h_{a_1}, 0, 0, \dots, 0, \dots) \cong (h_{a_1}, 0, 0, \dots, 0, \dots)$. That is, $k_{a_1} = h_{a_1} \neq 0$, and hence $(h_1, h_2, \dots, p \neq 0, 0, \dots) \in G'$ and also in $G'\beta_c$ for all $c < a_1$. Thus $H_{a_1} \cap (\bigcup_{c < a_1} G'\beta_c) \neq 0$, and

Received September 19, 1958, in revised form October 20, 1958.