ON THE RADIUS OF UNIVALENCE OF THE FUNCTION $\exp z^2 \Big|_0^{\pi}$

ERWIN KREYSZIG AND JOHN TODD

1. Introduction. We shall determine the radius of univalence ρ_u of the function

(1.1)
$$
E(z) = e^{z^2} \int_0^z e^{-t^2} dt.
$$

We shall write $E(z) = w = u(x, y) + iv(x, y)$. On the imaginary axis we have $u = 0$ and v, regarded as a function of y, has a single maximum at the solution $y = \rho$ of

$$
2yv(0, y) = 1.
$$

The value of ρ to eight decimal places has been determined by Lash Miller and Gordon [1] and is

(1.2)
$$
\rho = 0.92413887.
$$

It is evident that $\rho_u \leq \rho$. We shall prove the following theorem.

THEOREM. The number ρ is the radius of univalence of $E(z)$. Recently, the radius of univalence of the error function

$$
erf(z) = \int_0^z e^{-t^2} dt
$$

was determined [2]. It is interesting to note that when proceeding from *βrf(z)* to *E(z)* we meet an entirely different situation. In the case of *orf(z*), points z_1 , z_2 closest to the origin and such that $erf(z_1) = erf(z_2)$ are conjugate complex and lie far apart from each other. In the case of $E(z)$ points of that nature can be found in an arbitrarily small neigborhood of the point $z = i\rho$.

The actual situation is made clear by the diagram and tables given below. In Fig. 1 we show the curves $R = |E|$ = constant and $\gamma =$ $arg E = constant$ in the square $0 \le x \le 1.5, 0 \le y \le 1.5$ of the *z*-plane. The table shows the values of *Έ* for *z* on the curve *C* (defined below). The values given were obtained by summing an adequate number of terms of the power series on the Datatron 205 at the California Institute of Technology ; some were checked by comparison with the tables of Karpov $[4, 5]$ from which values of $E(z)$ can be obtained.

Received September 3, 1958.