ON STRICTLY SEMI-SIMPLE BANACH ALGEBRAS

EpiTH H. LUCHINS

I. Introduction. Define the strict radical of an algebra to be the
intersection of just those of its two-sided ideals which are regular maxi-
mal right ideals. Call the algebra strictly semi-simple (sss) if its strict
radical is the zero ideal. This note proves that the strict radical of a
real Banach algebra B contains the set of topologically nilpotent ele-
ments of B. Also, it gives a condition which is both necessary and
sufficient for B to be sss.

II. Preliminaries. For any ring or algebra A let T(A) denote the
set of all those two-sided ideals in A which are regular maximal right
ideals. The intersection of the elements of 7(A) is the strict radical
of A. A is strictly semi-simple (sss) if its striet radical is the zero
ideal.

LEMMA 1. Let I be a two-sided tdeal in the algebra (ring) A.
Then the following are equivalent:

(a) Ie T(A), that 1s, I s a regular maximal right ideal.

(b) I s a regular maximal left ideal.

(e) A/l is a division algebra (division ring).

Proof. Use is made of the theorem [4, Theorem 24.6.1] that a
division algebra has no proper right or left ideals and that an algebra
with no proper right ideals either is trivial or is a division algebra.

If (a) holds, then A/I has no proper right ideals. Now A/l is not
trivial since if j is a left unit element of A modulo I, /-5 =4 #0
(where 2’ denotes the image of x e A under the canonical homomorphism
of A onto A/I). The cited theorem shows A/I is a division algebra.
Thus (a) implies (c) and, similarly, (b) implies (¢). Moreover, if (a)
holds, then j’ is a left identity for A/I and hence an identity for it, so
that I is regular with 7 as its associated unit element. If IcL, L a
left ideal in A, then L/I is a left ideal in A/I, and an improper ideal
by the cited theorem, so that L =T or A and I is a regular maximal
left ideal. Thus (a) implies (b).

Suppose (c) holds and ¢’ is a unit of A/I. Then I is regular with
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