A BOUND FOR THE ORDERS OF THE COMPONENTS OF A SYSTEM OF ALGEBRAIC DIFFERENCE EQUATIONS

BERNARD GREENSPAN

- 1. The object of this paper is to obtain a bound for the orders of the components of a system of algebraic difference equations, each component of which is of dimension zero. In the analytic case, this roughly amounts to determining the maximum number of arbitrary functions of period unity which each corresponding manifold can possess.
- 2. We deal with difference polynomials in n indeterminates y_1, \dots, y_n having coefficients in an inversive difference field, \mathscr{T} , of characteristic zero. Transforms are denoted by means of a second subscript appended to Latin letters having a single subscript. Thus, for example, $A_{3,1}^{(2)}$ denotes the fourth transform of $A_3^{(2)}$. The symbol $\mathscr{T}\{y_1,\dots,y_n\}$ denotes the ring of difference polynomials in the indeterminates y_1,\dots,y_n . The perfect difference ideal generated by a system \mathscr{O} of difference polynomials is designated $\{\mathscr{O}\}$. Unless there is a possibility for confusion, the term "ideal" is used for the longer "reflexive difference ideal". It is well known that every perfect ideal is the intersection of a finite number of prime ideals, none of which contain any other, [4]. As in ordinary or in differential algebra, these prime ideals are termed components of the decomposition of the perfect ideal.

If Λ is a prime ideal in $\mathscr{F}\{u_1, \dots, u_q; y_1, \dots, y_p\}$, then the u_i are said to constitute a parametric set of indeterminates, or briefly parameters, of Λ if

- (1) Λ contains no nonzero difference polynomial in the u_i alone;
- (2) for each k, $1 \le k \le p$, there exists in Λ a nonzero difference polynomial in y_k and u_1, \dots, u_q .

It is shown in [1, p. 141] that all parametric sets of a given reflexive prime difference ideal Λ contain the same number of parameters. This number is known as the *dimension* of Λ , and is briefly denoted $\dim \Lambda$. If the prime ideal has no parameters, we say its dimension is zero.

By the *order* of a prime ideal Λ in $\mathscr{F}\{y_1, \dots, y_n\}$, we mean the algebraic dimension of Λ , that is $\partial^0 \mathscr{F}(\eta_1, \dots, \eta_n; \eta_{11}, \dots, \eta_{n1}; \eta_{12}, \dots, \eta_{n2}; \dots)/\mathscr{F}$ or $\partial^0 \mathscr{F} < \eta_1, \dots, \eta_n > /\mathscr{F}$, where η_1, \dots, η_n is a generic zero of Λ .

A system of difference (differential) polynomials in $\mathcal{F}\{y_1, \dots, y_n\}$ is said to be of $type\ (r_1, \dots, r_n)$ if r_1, \dots, r_n are the maximum orders of the transforms (derivatives) of y_1, \dots, y_n respectively that appear in the system.

Received September 4, 1958. The author wishes to thank Professor R. M. Cohn for help in preparing this paper.