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1. Introduction. One of the more frequently used iterative methods
[11, 14, 18] in numerically solving self-adjoint partial difference equa-
tions of elliptic type:
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is the Young-Frankel successive overrelaxation scheme [16, 4]. If super-
seripts denote the iteration indices, then the successive overrelaxation
scheme is defined by
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The parameter w is the relaxation factor.

Since the introduction of this method, there has remained the ques-
tion of the effect of different orderings of the equations of (1) on the
rate of convergence of the overrelaxation scheme. Young [16] introduced
the concept of a consistent ordering of the unknowns for a class of
matrices satisfying his definition of property (A), and he conjectured
[17] that, with certain additional assumptions, these consistent orderings
were optimal' in the sense that, among all orderings, the consistent
orderings give the fastest convergent iterative scheme for the case of
w =1 of (2).

The problem of the relationship between orderings and rates of
convergence has been recently investigated by Heller [6], whose approach
was combinatorial. Assuming the n x n matrix A = ||a,,|| of (1) to be
multi-diagonal, Heller concentrated on the problem of finding all order-
ings whose associated Gauss-Seidel iterative method, the special case of
(2) with @ =1, had the same eigenvalues as the eigenvalues of the
Gauss-Seidel method based on the ‘‘usual ordering.’’

Our approach to the question of orderings is based on the Perron-
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I For some preliminary results on this conjecture for optimum orderings, see [17].
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