ON THE SIMILARITY TRANSFORMATION BETWEEN A MATRIX AND ITS TRANPOSE

OLGA TAUSKY AND HANS ZASSENHAUS

It was observed by one of the authors that a matrix transforming a companion matrix into its transpose is symmetric. The following two questions arise:

I. Does there exist for every square matrix with coefficients in a field a non-singular symmetric matrix transforming it into its transpose?
II. Under which conditions is every matrix transforming a square matrix into its transpose symmetric?

The answer is provided by

THEOREM 1. For every $n \times n$ matrix $A = (a_{ik})$ with coefficients in a field F there is a non-singular symmetric matrix transforming A into its transpose A^τ.

THEOREM 2. Every non-singular matrix transforming A into its transpose is symmetric if and only if the minimal polynomial of A is equal to its characteristic polynomial i.e. if A is similar to a companion matrix.

Proof. Let $T = (t_{ik})$ be a solution matrix of the system $\Sigma(A)$ of the linear homogeneous equations.

\[
\begin{align*}
(1) & \quad TA - A^\tau T = 0 \\
(2) & \quad T - T^\tau = 0.
\end{align*}
\]

The system $\Sigma(A)$ is equivalent to the system

\[
\begin{align*}
(3) & \quad TA - A^\tau T^\tau = 0 \\
(4) & \quad T - T^\tau = 0
\end{align*}
\]

which states that T and TA are symmetric. This system involves $n^2 - n$ equations and hence is of rank $n^2 - n$ at most. Thus there are at least n linearly independent solutions of $\Sigma(A)$.

On the other hand it is well known that there is a non-singular matrix T_0 satisfying

\[T_0 A T_0^{-1} = A^\tau,
\]

Received December 18, 1958.
This part of the proof was provided by the referee. Our own argument was more lengthy.