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1* Introduction* Let G be a group, p a prime, and HP(G) the sub-
group of G generated by the elements of G which do not have order p.
In a research problem in the Bulletin of the American Mathematical
Society, one of the authors posed the following problem: is it always
true that HP(G) = 1, HP(G) = G, or [G : HP(G)] = pΊ This problem is
easily settled in the affirmative for p = 2, and a similar answer was
recently given for p — 3 ([5]). In this paper (Section 2) we give an
affirmative answer for the case that G is finite and not a p-group.
Furthermore (Section 3) we are able to give a rather precise description
of the structure of G in the most interesting case, when [G : HP(G)] = p.
This structure theorem depends heavily on the deep results of Hall and
Higman ([4]) and Thompson ([6]) on finite groups. If H (Φ l ) i s a finite
group and there exists a group G such that HJfi) is isomorphic to Hy

where HP(G) Φ G, then we call H an if^-group; it is seen that ί/^-groups
are natural generalizations of "Frobenius groups." By a Frobenius
group we mean a finite group G possessing an automorphism σ of prime
order p such that xσ = x if and only if x — 1. It is easy to show that
this implies

for all ίc in G. This last equation characterizes ifp-groups,1 and as a
generalization of Thompson's result ([6]) that Frobenius groups are nil-
potent, we show that iJp-groups are solvable, among other things.

Throughout the paper, if B is a group, A a subgroup of B, then
NB(A) and CB(A) mean, respectively, the normalizer and centralizer of A
in B. By Z(A) we mean the center of A.

2. The i^-problem. Let G be a group, and let H — HP{G). Suppose
( 1 ) G is finite,
( 2 ) G is not a p-group,
( 3 ) the index of H in G is greater than p,
(4 ) G is a group of minimal order satisfying (1), (2), (3). Note that

every element of G which is not in H has order p.
Let g be a prime dividing [G : 1], q φ p, and let Q be a Sylow q-

group of G; then Q is also a Sylow g-group of if. Let N ~ NG(Q); then
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1 Unless the group is a p-group; see Theorem 2.
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