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l Introduction. There are, in general, two main approaches to
the introduction of strong infinity assertions to the Zermelo-Fraenkel
set theory. The arithmetical approach starts with the regular ordinal
numbers, continues with the weakly inaccessible numbers and goes on
to the ^-numbers of Mahlo [4], etc. The model-theoretic approach, with
which we shall be concerned, introduces the strongly inaccessible numbers
and leads to Tarski's axioms of [14] and [15]. As we shall see, even
in the model-theoretic approach we can use methods for expressing strong
assertions of infinity which are mainly arithmetical. Therefore we shall
introduce strong axiom schemata of infinity by following Mahlo [4,5,6,].
Using the ideas of Montague in [7] we shall give those axiom schemata
a purely model-theoretic form. Also the axiom schemata of replacement
in conjunction with the axiom of infinity will be given a similar form,
and thus the new axiom schemata will be seen to be natural continuations
of the axiom schema of replacement and infinity.

A provisional notion of a standard model, introduced in § 2, will be
basic for our discussion. However, in § 5 it is shown that this definition
cannot serve as a general definition for the notion of a standard model.

2. Standard models of set theories. For the forthcoming discussion
we need the notion of a standard model of a set theory. A general
principle which distinguishes between standard and non-standard models
of set theory is not yet known. Nevertheless, a notion of a standard
model for various set theories will be given here, but this will serve
only as an ad-hoc principle and we shall see later that its general
application is not justified.

The Zermelo-Fraenkel set theory is generally formalized in the
simple applied first-order functional calculus, since this is the most
natural language for a set theory. In that formulation the Zermelo-
Fraenkel set theory has an infinite number of axioms. From that formu-
lation one passes directly to a formulation of the Zermelo-Fraenkel
set theory by a finite number of axioms in the non-simple applied
first-order functional calculus (we shall denote functional variables with
PfPifPn )* The axioms of extensionality, pairing, sum-set, power-
set and infinity are as in [2]. The changed axioms are
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