A CLASS OF HYPER-FC-GROUPS

A. M. DUGUID

1. Introduction. An element g of an arbitrary group G is called an FC element if it has a finite number of conjugates in G. The set of all FC elements of G forms a characteristic subgroup H of G (see Baer [1]). The upper FC-series of G, introduced by Haimo [4] as the FC-chain, may be defined by

$$H_{_0}=\,\{1\}$$
 , $H_{_{i\,+\,1}}\!/H_{_i}=H\!(G\!/H_{_i})$,

the subgroup of all FC elements of G/H_i . The upper FC-series is continued transfinitely in the usual way, by defining

$$H_{lpha} = igcup_{eta < lpha} H_{eta}$$
 ,

when α is a limit ordinal. If $H_{\gamma} = G$, but $H_{\delta} \neq G$, for all $\delta < \gamma$, we say that the group G is hyper-FC of FC-class γ , following McLain [7].

A group G in which the transfinite upper central series

$$\{1\}=Z_{\scriptscriptstyle 0}\leq Z_{\scriptscriptstyle 1}\leq \cdots \leq Z_{\scriptscriptstyle a}\leq \cdots$$

reaches the whole group is called a ZA-group (Kurosh [6]), and we may say that G has class α if $Z_{\alpha} = G$, but $Z_{\beta} \neq G$, for all $\beta < \alpha$. Glushkov [3] and McLain [7] have given constructions for a ZA-group of any given class. The main object of this note is to construct groups of given FC-class.

2. Constructions and proofs.

DEFINITION. We say that a group G is of type Q_{α} if

- 1. G has FC-class α , with upper FC-series
 - $\{1\}=H_{\scriptscriptstyle 0}\leq H_{\scriptscriptstyle 1}\leq \cdots \leq H_{\scriptscriptstyle lpha}=G$,
- 2. $H_{\gamma+1}/H_{\gamma}$ is infinite, for all $\gamma < \alpha$, and
- 3. $H_{\gamma+1}/H_{\gamma}$ has the unit subgroup for its centre, for all $\gamma < \alpha$.

Thus the group with only one element is of type Q_0 , and, in constructing a group G of type Q_{α} , we may assume the existence of a group G_{β} of type Q_{β} , for each $\beta < \alpha$. If α is a limit ordinal, we define G to be the ordinary (restricted) direct product of the groups G_{β} , for all $\beta < \alpha$. Then G has the properties 1-3, and thus has type Q_{α} . For the case $\alpha = \beta + 1$ we shall construct G by 'wreathing' the regular

Received March 5, 1959.