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Introduction. The purpose of this paper is to establish the follow-
ing theorem.

THEOREM. Suppose U and V are Banach spaces and that there are
bounded projections Px from U onto X and P2 from V onto Y. Then
there are no bounded projections from the space of bounded operators
on U into V onto the closed subspace of compact operators, in the fol-
lowing cases:

1. X is isomorphic [1] to /p, 1 < p < oo Y is isomorphic to /q,
1 < P < Q < °o or cQ or c.

2. X is isomorphic to co; Y is isomorphic to /*>, c0 or c.
3. X is isomorphic to c; Y is isomorphic to /°°.

NOTATION. If X and Y are Banach spaces, [X, Y] is the set of
bounded linear operators from X into Y. /°° is the set of bounded
sequences with the sup norm.

A space X is said to have a countable basis if there is a countable
subset of elements of X, called a basis, such that each x e X is uni-
quely expressible as

oo

α = Σ ξiΨi
ί = l

in the sense that

α-Σ£i?>«ll = 0-

If X and Y are spaces with countable bases (<Pa) and (ψj) respectively
and A is a bounded linear transformation from X into Y, then A can
be represented by an infinite matrix (aυ), with

ΣsυΨi

[2]. In what follows, the basis used for sp will be given by φ3 =
(0, 0, , 0,1, 0, 0, •) where there is a 1 in the jth place and 0 else-
where. Similarly for ψt. The matrix representations of operators will
all be with respect to these bases.
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