THE METRIZATION OF STATISTICAL METRIC SPACES

B. Schweizer, A. Sklar and E. Thorp

In a previous paper on statistical metric spaces [3] it was shown that a statistical metric induces a natural topology for the space on which it is defined and that with this topology a large class of statistical metric (briefly, SM) spaces are Hausdorff spaces.

In this paper we show that this result (Theorem 7.2 of [3]) can be considerably generalized. In addition, as an immediate corollary of this generalization, we prove that with the given topology a large number of SM spaces are metrizable, i.e., that in numerous instances the existence of a statistical metric implies the existence of an ordinary metric.¹

Theorem 1.2 Let (S, \mathcal{F}) be a statistical metric space, \mathcal{U} the two-parameter collection of subsets of $S \times S$ defined by

$$\mathcal{U} = \{U(\varepsilon, \lambda); \varepsilon > 0, \lambda > 0\},$$

where

$$U(\varepsilon, \lambda) = \{(p, q); p, q \text{ in } S \text{ and } F_{nq}(\varepsilon) > 1 - \lambda\}$$
,

and T a two-place function from $[0,1] \times [0,1]$ to [0,1] satisfying $T(c,d) \ge T(a,b)$ for $c \ge a$, $d \ge b$ and $\sup_{x \le 1} T(x,x) = 1$. Suppose further that for all p,q,r in S and for all real numbers x,y, the Menger triangle inequality.

(1)
$$F_{pr}(x+y) \ge T(F_{pq}(x), F_{qr}(y))$$

is satisfied. Then $\mathscr U$ is the basis for a Hausdorff uniformity on $S \times S$.

Proof. We verify that the $U(\varepsilon, \lambda)$ satisfy the axioms for a basis for a Hausdorff (or separated) uniformity as given in [2; p. 174-180] (or in [1; II, § 1, n° 1]).

- (a) Let $\Delta = \{(p, p); p \in S\}$ and $U(\varepsilon, \lambda)$ be given. Since for any $p \in S$, $F_{pp}(\varepsilon) = 1$, it follows that $(p, p) \in U(\varepsilon, \lambda)$. Thus $\Delta \subset U(\varepsilon, \lambda)$.
 - (b) Since $F_{pq} = F_{qp}$, $U(\varepsilon, \lambda)$ is symmetric.
- (c) Let $U(\varepsilon, \lambda)$ be given. We have to show that there is a $W \in \mathcal{U}$ such that $W \circ W \subset U$. To this end, choose $\varepsilon' = \varepsilon/2$ and λ' so small that $T(1 \lambda', 1 \lambda') > 1 \lambda$. Suppose now that (p, q) and (q, r) belong to

Received June 12, 1959.

¹ These considerations have led to the study of SM spaces which are not metrizable as well as to other natural topologies for SM spaces, questions which will be investigated in a subsequent paper.

² The terminology and notation are as in [3].