ON NORMAL NUMBERS

WOLFGANG SCHMIDT

1. Introduction. A real number ξ , $0 \leq \xi < 1$, is said to the *normal in the scale of r* (or *to base r*), if in $\xi = 0 \cdot a_1 a_2 \cdots$ expanded in the scale of $r^{(1)}$ every combination of digits occurs with the proper frequency. If $b_1b_2 \cdots b_k$ is any combination of digits, and Z_N the number of indices *i* in $1 \leq i \leq N$ having

 $b_1 = a_1, \dots, b_k = a_{k+k-1}$

then the condition is that

(1) $\lim_{M \to \infty} Z_N N^{-1} = r^{-k}$.

A number f is called *simply normal* in the scale of r if (1) holds for *k* = 1. A number is said to be *absolutely normal* if it is normal to every base *r.* It is well-known (see, for example, [6], Theorem 8.11) that almost every number *ξ* is absolutely normal.

We write $r \sim s$, if there exist integers *n*, *m* with $r^n = s^n$ *.* Other wise, we put $r \nsim s$.

In this paper we solve the following problem. *Under what conditions on* r, *s is every number ξ which is normal to base r also normal to base s* ? The answer is given by

THEOREM 1. A Assume $r \sim s$. Then any number normal to base *r is normal to base s.*

B If $r \nsim s$, then the set of numbers ξ which are normal to base *r but not even simply normal to base s has the power of the continuum.*

The A-part of the Theorem is rather trivial, but I shall sketch a proof of it, since I could not find one in the literature.

Next, let *I* be an interval of length $|I|$ contained in the unit-interval $U = [0, 1]$. We write $M_N(\xi, r, I)$ for the number of indices i in $1 \le i \le N$ such that the fractional part $\{r^i \xi\}$ of $r^i \xi$ lies *I*. A sequence $\xi, r \xi, r^i \xi$, *has uniform distribution modulo* 1 if

$$
R_N(\xi, r, I) = M_N(\xi, r, I) - N|I| = o(N)
$$

for any I. It was proved by Wall $[8]$ (the most accessible proof in $[6]$, Theorem 8.15) that ξ is normal to base r if and only if ξ , $r\xi$, $r^2\xi$, has uniform distribution modulo 1.

Write $T_{s,t}$, where $1 < t < s$, for the following mapping in U : If $T_{s,t}\xi = 0 \cdot a_1 a_2 \cdots$ in the scale of t, then $T_{s,t}\xi = 0 \cdot a_1 a_2 \cdots$ in the scale of s.

Received June 2, 1959.

¹ In case of ambiguity we take the representation with an infinity of a_i less then $r-1$. But this does not affect the property of ξ to be normal or not.