ON NORMAL NUMBERS

WOLFGANG SCHMIDT

1. Introduction. A real number ξ , $0 \le \xi < 1$, is said to the normal in the scale of r (or to base r), if in $\xi = 0 \cdot a_1 a_2 \cdots$ expanded in the scale of $r^{(1)}$ every combination of digits occurs with the proper frequency. If $b_1 b_2 \cdots b_k$ is any combination of digits, and Z_N the number of indices i in $1 \le i \le N$ having

 $b_{\scriptscriptstyle 1}=a_{\scriptscriptstyle i},\,\cdots$, $b_{\scriptscriptstyle k}=a_{\scriptscriptstyle \iota+k-1}$,

then the condition is that

(1) $\lim_{N \to \infty} Z_N N^{-1} = r^{-k}$.

A number ξ is called *simply normal* in the scale of r if (1) holds for k = 1. A number is said to be *absolutely normal* if it is normal to every base r. It is well-known (see, for example, [6], Theorem 8.11) that almost every number ξ is absolutely normal.

We write $r \sim s$, if there exist integers n, m with $r^n = s^m$. Otherwise, we put $r \not\sim s$.

In this paper we solve the following problem. Under what conditions on r, s is every number ξ which is normal to base r also normal to base s? The answer is given by

THEOREM 1. A Assume $r \sim s$. Then any number normal to base r is normal to base s.

B If $r \not\sim s$, then the set of numbers ξ which are normal to base r but not even simply normal to base s has the power of the continuum.

The A-part of the Theorem is rather trivial, but I shall sketch a proof of it, since I could not find one in the literature.

Next, let I be an interval of length |I| contained in the unit-interval U = [0, 1]. We write $M_N(\xi, r, I)$ for the number of indices i in $1 \le i \le N$ such that the fractional part $\{r^i\xi\}$ of $r^i\xi$ lies I. A sequence $\xi, r\xi, r^2\xi, \cdots$ has uniform distribution modulo 1 if

$$R_{N}(\xi, r, I) = M_{N}(\xi, r, I) - N|I| = o(N)$$

for any *I*. It was proved by Wall [8] (the most accessible proof in [6], Theorem 8.15) that ξ is normal to base *r* if and only if $\xi, r\xi, r^2\xi, \cdots$ has uniform distribution modulo 1.

Write $T_{s,t}$, where 1 < t < s, for the following mapping in U: If $\xi = 0 \cdot a_1 a_2 \cdots$ in the scale of t, then $T_{s,t} \xi = 0 \cdot a_1 a_2 \cdots$ in the scale of s.

Received June 2, 1959.

¹ In case of ambiguity we take the representation with an infinity of a_i less then r-1. But this does not affect the property of ξ to be normal or not.