ON NON-ASSOCIATIVE ALGEBRAS ASSOCIATED WITH BILINEAR FORMS

W. E. JENNER

If \mathfrak{B}_0 is a vector space over a field k, then with any non-degenerate bilinear form f_0 on $\mathfrak{B}_0 \times \mathfrak{B}_0$ is associated the group $\mathfrak G$ of linear trans formations of \mathfrak{B}_0 which keep f_0 invariant. In this paper a procedure is given for associating with such a bilinear form an algebra \mathfrak{A} , nonassociative in general, whose automorphism group is isomorphic to © and which is right and left simple provided \mathfrak{B}_0 has dimension at least 2. In case *k* is the field of real numbers, then © is a Lie group and its Lie algebra is the Lie algebra of derivations of \mathfrak{A} . In case the form f_0 is degenerate, and either symmetric or alternating, then the analogue of the Wedderburn Principal Theorem holds for \mathfrak{A} . The results obtained apply, in particular, to the orthogonal and symplectic groups.

Let \mathfrak{B}_{0} be a vector space of dimension *n* over a field *k* with basis u_1, \dots, u_n . It is assumed that $\lambda v = v \lambda$ for all $v \in \mathfrak{B}_0$ and $\lambda \in k$. Sup pose f_0 is a bilinear form on $\mathfrak{B}_0 \times \mathfrak{B}_0$. Define $\mathfrak A$ to be the algebra over *k* with basis e_0, e_1, \dots, e_n and multiplication table $e_0^2 = e_0, e_i \cdot e_0 = e_0$ $e_i = e_i, e_i \cdot e_j = f(e_i e_j)e_0$ for i, $j = 1, 2, \dots, n$, where $f(e_i, e_j) = f_0(u_i, u_j)$. Let \mathfrak{B} be the subspace of \mathfrak{A} spanned be e_1, \dots, e_n . Then f is a bilinear form on $\mathfrak{B} \times \mathfrak{B}$.

THEOREM 1. Suppose that f is non-degenerate and that $n \geq 2$. Then $\mathfrak A$ is right and left simple.

Proof. Let $\mathfrak U$ be a non-zero left ideal of $\mathfrak V$ and let u be a non-zero element of U. Suppose first that $u \in \mathcal{B}$. Then there exists an element $v \in V$ such that $f(v, u) \neq 0$. Then $v \cdot u = f(v, u)e_0$. Therefore $e_0 \in \mathfrak{U}$ and so $\mathfrak{U} = \mathfrak{A}$. Next suppose $u = \alpha e_0 + v$ where $\alpha \neq 0$ in k and $v \in V$. Then one can assume $\alpha = 1$. Since $n \geq 2$ it follows that $e_1 \cdot u = e_1 + \lambda_1 e_0$ and $e_2 \cdot u = e_2 + \lambda_2 e_0$ where $\lambda_1, \lambda_2 \in k$. If $\lambda_1 = 0$ then $e_1 \in U$ and the first part of the proof applies; similarly if $\lambda_2 = 0$. Consequently one can suppose $\lambda_1 \lambda_2 \neq 0$. Then $\lambda_2 e_1 u - \lambda_1 e_2 u = \lambda_2 e_1 - \lambda_1 e_2$ is a non-zero element in $\mathfrak{U} \cap \mathfrak{B}$. Thus the first part of the proof again applies and so $\mathfrak{U} = \mathfrak{A}$. Therefore \mathfrak{A} is left simple; similarly \mathfrak{A} is right simple.

If SI is any (non-associative) algebra over *k* then left (right) multi plication by an element $a \in \mathfrak{A}$ determines a linear transformation $L_a(R_a)$ of the underlying vector space of \mathfrak{A} by $a \cdot u = L_a u(u \cdot a = R_a u)$, $u \in \mathfrak{A}$. The set of linear transformations L_a (R_a) for $a \in \mathfrak{A}$ generate an associa tive algebra $L(\mathfrak{A})$ $(R(\mathfrak{A}))$ over k. The algebras $L(\mathfrak{A})$ and $R(\mathfrak{A})$ together

Received May 8, 1959.