SEPARABLE CONJUGATE SPACES

ROBERT C. JAMES

A Banach space B is reflexive if the natural isometric mapping of B into the second conjugate space B^{**} covers all of B^{**} . All conjugate spaces of a reflexive separable space B are separable. The nonreflexive space $l^{(1)}$ is separable and its first conjugate space is (m), which is non-separable. The space (c_0) is separable, its first conjugate space is $l^{(1)}$, and its second conjugate space is (m). An example is known of a nonreflexive Banach space whose conjugate spaces are all separable [4]. This space is pseudo-reflexive in the sense that its natural image in the second conjugate space has a finite-dimensional complement. The structure of such spaces has been studied carefully [2].

The main purpose of this paper is to show that the sequence started by $l^{(1)}$ and (c_0) can be extended to give a sequence $\{B_n\}$ of separable Banach spaces such that, for each n, the *n*th conjugate space of B_n is its first nonseparable conjugate space. The principal tool used is a theorem which states a sufficient condition on a space T for the existence of a space B with

$$B^{**} = \pi(B) \dotplus T$$
 ,

where $\pi(B)$ is the natural image of B in B^{**} . The following definition and notation will be used.

A basis for a Banach space B is a sequence $\{u^i\}$ such that, for each x of B, there is a unique sequence of numbers $\{a_i\}$ for which $\lim_{n\to\infty} ||x - \sum_{i=1}^{n} a_i u_i|| = 0$. A sequence $\{u_i\}$ is a basis for its closed linear span if and only if there is a number $\varepsilon > 0$ such that

 $\left|\left|\sum_{1}^{n+p} c_i x_i\right|\right| \ge \varepsilon \left|\left|\sum_{1}^{n} c_i x_i\right|\right|$

for any numbers $\{c_i\}$ and positive integers *n* and *p* [1, page 111]. If ε can be + 1, the basis is an *orthogonal basis*. It will be useful to classify bases as follows:

Type α . If $\{a_i\}$ is a sequence of numbers for which $\sup_n || \sum_{i=1}^{n} a_i u_i || < \infty$, then $\sum_{i=1}^{\infty} a_i u_i$ converges.

Type β . If f is a linear functional defined on B and $||f||_n$ is the norm of f on the closed linear span of $\{u_i \mid i \geq n\}$, then $\lim_{n \to \infty} ||f||_n = 0$.

There are Banach spaces which have bases which are neither of type α nor of type β , while a basis is of both types if and only if the space

Received April 28, 1959.