COMPUTATIONS OF THE MULTIPLICITY FUNCTION

S. R. FOGUEL

1. Introduction. Let H be a separable Hilbert space. The following two problems will be studied:

1. Given a bounded normal operator A , of multiplicity m , what are the conditions, on the bounded measurable function f , so that the multiplicity of $S = f(A)$ is $n, n < \infty$?

2. How to compute the multiplicity of a normal operator that com mutes with a given normal operator, of finite multiplicity?

NOTATION. Let S be a normal operator of multiplicity $n, n < \infty$. There exist a Borel measure *μ* and *n* Borel sets in the complex plane $e_1 \supset e_2 \supset \cdots \supset e_n$, such that, up to unitary equivalence,

(1.1)
$$
H = \sum_{i=1}^{n} L_{2}(\mu, e_{i})
$$

$$
S\left(\begin{array}{c} f_{1}(\lambda) \\ \vdots \\ f_{n}(\lambda) \end{array}\right) = \left(\begin{array}{c} \lambda f_{1}(\lambda) \\ \vdots \\ \lambda f_{n}(\lambda) \end{array}\right)
$$

This is the Multiplicity Theorem. (See Theorem X. 5.10) of [1]. The operator *S* has uniform multiplicity if $e_1 = e_2 = \cdots = e_n$

The resolution of the identity, of a normal operator *A,* will be denoted by $E(A; \alpha)$. The Boolean algebra of projections, generated by $E(A; \alpha)$ will be denoted by \mathfrak{E}_A . Let $E(\alpha)$ stand for $E(S; \alpha)$ and $\mathfrak C$ for *®s .* Throughout this note all operators are assumed to be bounded.

We shall use the following results from [2]:

Let *S* be a normal operator of multiplicity *n,* and *B* a normal operator that commutes with *S.* Let *H* and *S* be represented by 1.1.

THEOREM A. *There exist k Borel measurable bounded complex functions* $y_1(\lambda)$, \cdots , $y_k(\lambda)$ and k matrices of Borel measurable bounded *complex functions* $\varepsilon_1(\lambda)$, \cdots , $\varepsilon_k(\lambda)$ *such that*:

For a fixed λ the matrices $\varepsilon_i(\lambda)$ are disjoint self adjoint projec*tions whose sum is the identity and*

(1.2)
$$
B\begin{pmatrix} f_1(\lambda) \\ \vdots \\ f_n(\lambda) \end{pmatrix} = \left(\sum_{i=1}^k y_i \varepsilon^i(\lambda)\right) \begin{pmatrix} f_1(\lambda) \\ \vdots \\ f_n(\lambda) \end{pmatrix}
$$

Received October 21, 1958, and in revised form April 24, 1959. This work has been partially supported by the National Science Foundation.