NOTE ON ALDER’S POLYNOMIALS

L. CARLITZ
1. Alder’s polynomial Gy (x) may be defined by means of
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where M is a fixed integer >2 and
(@=01—-0a)l—ax)+-- 1 —ax"), (a)y=1.
Alder [1] obtained the identities
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thus generalizing the well-known Rogers-Ramanujan identities. Singh
[2, 3] has further generalized (2), (3); he showed that
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where the A (z, t) are polynomials in x.
In a recent paper [4] Singh has proved that

(4) G () = ' t<M—1).

In the present note we give another proof of (4) and indeed obtain the
explicit formula

_ _1\s (2), Yss-Dest(1 _ ps t-Ms+s
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valid for all t.

2. Since
(1 — ka*)(kx);-1 = (k2)s + ka*(1 — 2°)(kx)s-, ,
the left member of (1) is equal to
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