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1. Introduction. Suppose W is a real L2(— π, π) function that is
bounded below but not equivalent to a constant function. The Toeplitz
matrix associated with W is To = [Wj-k], j , k = 0,1, 2, ,
where

(1.1) wn = - I - ( TΓ(0)β-*»* # , n = 0, ± 1, ± 2, . .

The hermitian matrix To gives rise to a semi-bounded transformation
Tx on complex sequential Hubert space l2, and thus the Friedrichs ex-
tension T of Tx is a self-adjoint operator. Γ = Γ(W(φ)) is the Toeplitz
operator associated with W.

In [5], [6] Hartman and Wintner show that the case in which W
is not semi-bounded (which we prudently avoid here) presents special
difficulty. However for semi-bounded W they prove that

(i) the spectrum of T fills the interval
[ess inf W, ess sup W],
and

(ii) T has no point spectrum.
Thus the spectral measure ([4], p. 58) E(-) of T is such that (E(>)F, F>
is a nonatomic Borel measure for each F e ί\ If ζE( )F, F> is AC
(absolutely continuous with respect to Lebesgue measure) for each F e ί\
then we say that T is AC.

Our investigation continues work of C. R. Putnam [11]. He proves
that T is AC in each of the following cases:

(i) W(φ) = 2 cos nφ, n = 1, 2, . .

(ii) W(φ) = 2 sin nφ, n = 1, 2, .

(iii) Let αjfc = f̂c-j for fe — j ^ 1 and ajlc = 0 otherwise.

Further suppose that the {wj are real, that Ao = [αJfc] is bounded, and
that 0 is not an eigenvalue of the Hankel matrix [wJ+k+1], j , &=0,1, 2, .

For case (i) Putnam gives a more complete spectral analysis. He
applies the perturbation theory propounded in [13] to prove the follow-
ing result:

1.2 T(2 cos nφ) is unitarily equivalent to 2Tn(iT(2cosφ)). Here
Tn is the nth degree Tchebichef polynomial, n = 1, 2, •••.
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