A REFINEMENT OF THE FUNDAMENTAL THEOREM ON THE DENSITY OF THE SUM OF TWO SETS OF INTEGERS

H. B. MANN

Let $A = \{a_0 < a_1 < \cdots \}$ be a set of integers and let $A(n)$ be the number of integers in *A* not exceeding *n.* If A, *B* are two such sets, we put $A + B = \{a + b\}$, where a denotes generically an element of A, *b* an element of *B.* It should be noted that *A* and *B* may contain negative numbers or zero and that these are counted in $A(n)$ and $B(n)$.

Erdoes in an unpublished paper proved:

If $\lim_{m\to\infty}(A(m)/m) = \lim_{m\to\infty}(B(m)/m) = 0$, then for every $\varepsilon > 0$ there are infinitely many x such that if $C = A + B$ then

$$
C(x) \geq A(x)(1-\varepsilon) + B(x) .
$$

Clearly there are then also infinitely many *y* such that

$$
C(y) \ge A(y) + B(y)(1-\varepsilon).
$$

Erdoes conjectured that it is possible to choose infinitely many *x = y.*

At the Number Theory Conference in Boulder, Colorado, Erdoes pro posed this problem to the author. It is clear that the Fundamental Theorem [3] is inadequate to deal with this problem, because it fails if $1\notin C$. The search for a stronger theorem finally led the author to Theorem 2. Theorem 3 is a consequence of Theorem 2 and is consider ably stronger than Erdoes conjecture.

THEOREM 1. Let $a_0 = b_0 = 0$. If $n \geq 0$, $n \notin C$ then there is an $m \notin C$, $m = n$ or $m < (n/2)$, such that

(1)

$$
\frac{C(n)}{n+1}\geq \frac{A(m)+B(m)-1}{m+1}+(C(n-m-1)-\frac{C(n)}{n+1}(n-m))\frac{1}{m+1}.
$$

For the proof of Theorem 1, we consider the following transforma tion: Let $n_1 < n_2 < \cdots < n_r = n$ be the gaps in C. Form $d_i = n - n_i$. Choose, if possible, a fixed number $e \in B$ such that an equation

$$
(2) \t a + e + d_i = n_j
$$

holds for some *i*. Let the set *B*^{*f*} consist of all numbers $e + d_s$ for which

Received July 20, 1959,