A CHARACTERISTIC SUBGROUP OF A *p-GROVP*

CHARLES HOBBY

If *x, y* are elements and *H, K* subsets of the p-group G, we shall denote by $[x, y]$ the element $y^{-p}x^{-p}(xy)^p$ of G, and by $[H, K]$ the sub group of G generated by the set of all *[h, k]* for *h* in *H* and *k* in *K.* We call a *p*-group G *p*-abelian if $(xy)^p = x^p y^p$ for all elements x, y of G. If we let $\theta(G) = [G, G]$ then $\theta(G)$ is a characteristic subgroup of G and $G/\theta(G)$ is p-abelian. In fact, $\theta(G)$ is the minimal normal subgroup *N* of G for which G/N is p-abelian. It is clear that $\theta(G)$ is contained in the derived group of G, and *G/Θ(G)* is *regular* in the sense of P. Hall [3]

Theorem 1 lists some elementary properties of p -abelian groups. These properties are used to obtain a characterization of p -groups G (for $p \geq 3$) in which the subgroup generated by the *pth* powers of elements of G coincides with the Frattini subgroup of G (Theorems 2 and 3). A group G is said to be metacyclic if there exists a cyclic normal sub group N with G/N cyclic. Theorem 4 states that a p-group G , for $p > 2$, is metacyclic if and only if $G/\theta(G)$ is metacyclic. Theorems on metacyclic p-groups due to Blackburn and Huppert are obtained as co rollaries of Theorems 3 and 4.

The following notation is used: G is a p-group; *G{n)* is the *nth* derived group of $G; G_n$ is the n th element in the descending central series of G ; $P(G)$ is the subgroup of G generated by the set of all x^p for *x* belonging to G ; $\varPhi(G)$ is the Frattini subgroup of G ; $\langle x, y, \dots \rangle$ is the subgroup generated by the elements $x, y, \dots; Z(G)$ is the center of G ; $(h, k) = h^{-1}k^{-1}hk$; if *H, K* are subsets of *G*, then (H, K) is the subgroup generated by the set of all *(h, k)* for *he H* and *k e K*.

THEOREM 1. *If G is p-abelian, then*

$$
(1.1) \t\t P(G^{(1)}) = P(G)^{(1)} ,
$$

$$
(1.2) \t\t P(G) \subseteq Z(G) ,
$$

(1.3)
$$
\varPhi(G^{_{(1)}}) = \varPhi(G)^{_{(1)}} = G^{_{(2)}}.
$$

Proof of (1.1). $\theta(G) = \langle 1 \rangle$ implies that $(xyx^{-1}y^{-1})^p = x^py^px^{-p}y^{-p}$ for all x, y in $G. (1.1)$ follows immediately.

Proof of (1.2). Let x be an arbitrary element of G , and suppose the order of x is p^n . Let $u = x^{1+p+\cdots+p^{n-1}}$. Then, for any y in G,

Received July 30, 1959. This work was supported by a National Science Foundation pre-doctaral fellowship.