A CHARACTERISTIC SUBGROUP OF A *p*-GROUP

CHARLES HOBBY

If x, y are elements and H, K subsets of the *p*-group G, we shall denote by [x, y] the element $y^{-p}x^{-p}(xy)^p$ of G, and by [H, K] the subgroup of G generated by the set of all [h, k] for h in H and k in K. We call a *p*-group G *p*-abelian if $(xy)^p = x^py^p$ for all elements x, y of G. If we let $\theta(G) = [G, G]$ then $\theta(G)$ is a characteristic subgroup of Gand $G/\theta(G)$ is *p*-abelian. In fact, $\theta(G)$ is the minimal normal subgroup N of G for which G/N is *p*-abelian. It is clear that $\theta(G)$ is contained in the derived group of G, and $G/\theta(G)$ is *regular* in the sense of P. Hall [3]

Theorem 1 lists some elementary properties of *p*-abelian groups. These properties are used to obtain a characterization of *p*-groups *G* (for $p \ge 3$) in which the subgroup generated by the *p*th powers of elements of *G* coincides with the Frattini subgroup of *G* (Theorems 2 and 3). A group *G* is said to be metacyclic if there exists a cyclic normal subgroup *N* with *G*/*N* cyclic. Theorem 4 states that a *p*-group *G*, for p > 2, is metacyclic if and only if $G/\theta(G)$ is metacyclic. Theorems on metacyclic *p*-groups due to Blackburn and Huppert are obtained as corollaries of Theorems 3 and 4.

The following notation is used: G is a p-group; $G^{(n)}$ is the *n*th derived group of G; G_n is the *n*th element in the descending central series of G; P(G) is the subgroup of G generated by the set of all x^p for x belonging to G; $\varphi(G)$ is the Frattini subgroup of $G; \langle x, y, \cdots \rangle$ is the subgroup generated by the elements $x, y, \cdots; Z(G)$ is the center of G; $(h, k) = h^{-1}k^{-1}hk$; if H, K are subsets of G, then (H, K) is the subgroup generated by the set of all (h, k) for $h \in H$ and $k \in K$.

THEOREM 1. If G is p-abelian, then

(1.1)
$$P(G^{(1)}) = P(G)^{(1)}$$
,

$$(1.2) P(G) \subseteq Z(G) ,$$

Proof of (1.1). $\theta(G) = \langle 1 \rangle$ implies that $(xyx^{-1}y^{-1})^p = x^py^px^{-p}y^{-p}$ for all x, y in G. (1.1) follows immediately.

Proof of (1.2). Let x be an arbitrary element of G, and suppose the order of x is p^n . Let $u = x^{1+p+\dots+p^{n-1}}$. Then, for any y in G,

Received July 30, 1959. This work was supported by a National Science Foundation pre-doctaral fellowship.