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Introduction. The homotopy and homology groups of a given arc-
wise connected surface are topological invariants. A smooth covering
surface F * is a locally-topological equivalent of its base surface F. Con-
sequently, it is natural that the fundamental and homology groups of
F*, T(F*) and H{F*) respectively, should be related to those of F,
T(F) and H(F) respectively. In this paper the term homology is always
used for the 1-dimensional case. The cover transformations of a covering
surface F* are topological self-mappings such that corresponding points
have the same projection on F. These cover transformations form a
group which we will denote by Γ(F*). The homology properties of F
should influence Γ(F*) by means of the composition of the self-topologi-
cal mapping and the locally-topological mapping F* —> F.

Section 1 considers the general class of smooth covering surfaces on
which there exists a continuation along every arc of the base surface.
We refer to such a covering surface as a regular covering surface F*.
A number of results are collected and put into the form in which they
are needed to derive the main theorems. The class {F*} is shown to
form a complete lattice. Next there is shown a one to one correspondence
between all subgroups Nt c T(F), such that Nt contains the commutator
subgroup Nc of T(F), and the set of all subgroups Ht c H(F). This
correspondence leads to isomorphisms which relate the associated sub-
groups.

Section 2 considers a special class of regular covering surfaces {F£}
in which F* is characterized by the properties that it corresponds to a
normal subgroup of T(F) and Γ(F*) is Abelian. In our notation these
covering surfaces form the class of homology covering surfaces (cf.
Kerekjarto [5]). An equivalent characterization of the property that
F* corresponds to a normal subgroup is the assumption that above any
closed curve on F there never lie two curves on F* one of which is
closed and the other open. There are derived here for {F*} an isomor-
phism and correspondence theorem which relates subgroups Γt c Γ(F*)
to quotient groups of H(F) and T{F). The class {F£} is shown to
form a complete and modular lattice. If the base surface F is an
orientable or non-orientable closed surface, with covering surface JPΛ*,

the rank of Γ(F*) is determined in terms of the genus of F and the
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