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Introduction* Recently G. Szego [9] and Z. Nehari [8] have obtained
some interesting results connecting the singularities of axially symmetric
harmonic functions with those of analytic functions. In this paper we
shall show that a similar connection also exists between the singulari-
ties of a three-dimensional harmonic function and a function of two
complex variables. We may do this by considering the Whittaker-
Bergman operator [10] [1] B3(fy «9f Xo) which transforms functions of
two complex variables f(t,u), into harmonic functions of three variables.

H(X) = BΛ(f, J^X0), Bs(f, -2f-Xo) = irArffr ^)—

t = [_(x _ iy)Ά. + z + (x + iy)

X - Xo I < ε, X=(x,y, z), Xo = (x09 Vo, z0) ,

where Jέf is a closed diίferentiable arc1 in the w-plane, and ε > 0 is suf-
ficiently small. We may see how this operator maps the functions
f(t,u) into harmonic functions by considering the homogeneous polyno-
mials of degree n in x, y, z, which are defined by

-(x-iy)Ά + z + (X + iy)JL-\ = Σ K.m(x, y, z)u~m .
£ Δ ) m=—n

The hUιm(x, y, z) are linearly independent polynomials, which form a com-
plete system [4]. Now, any harmonic function regular in a neighborhood
of the origin \X\ < ε, may be expanded into a series

H(X) = H(x, y, z) =ΣΓ=o Σί=-» αn.iλn.ι(», y, z),

which converges inside the smallest sphere on whose surface there is a
singularity of H(X).

From the definition of the harmonic polynomials we see that

f t V ^ = hnm(x,y,z),tV
2π% J£ u

where Jίf is, say, the unit circle. In spherical coordinates this result
may be recognized as one of Heine's [7] integral representations for the
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1 We shall usually consider <£ to be closed; however there is nothing preventing us
from considering open arcs also.
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