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Introduction* A real valued function / is said to be superad-
ditive on an inverval I — [0, a] if it satisfies the inequality f(x + y) i>
f{x) + f(y) whenever x, y and x + y are in I. Such functions have been
studied in detail by E. Hille and R. Phillips [1] and R. A. Rosenbaum
[2]. In this paper we show that any superadditive function/ on I has
a minimal superadditive extension F to the non-negative real line E, and
then proceed to show that F inherits much of its behavior from the be-
havior of / . We deal primarily with superadditive functions which are
continuous and non-negative.

A simple example of a superadditive function on [0, a] is furnished
by a convex function / with /(0) ^ 0. Also, if / is convex and /(0) = 0,
then it is easy to verify that its minimal superadditive extension F is
given by

F(x) = nf(a) +f(x — no)

for na ^ x < (n + l)α. In general, the minimal superadditive extension
F is not easily computed. In the sequel we shall discuss two methods
for obtaining F. For brevity we shall use the notation f*F to mean
"F is the minimal superadditive extension of / " .

l The decomposition method. DEFINITION. LetxeE. The num-
bers x1, , xn are said to form an a-partition for x if x1 -\ h%n = x
and for each i = 1, , n we have 0 ^ xι ^ a.

THEOREM 1. Let f be a superadditive function on / = [0, α]. Then
the function F defined on E by the equation

F(x) = sup Σf{uι) ,

the supremum being taken over all a-partitions of x, is the minimal
superadditive extension of f.

Proof. We will show that F is superadditive. The minimality of F
will then follow from the fact that any superadditive extension / of /
must satisfy f(x) ^ Σf{xι) for all xeE and all α-partitions x1, , xn of
x. Let x,yeE,s>0. Choose α-partitions x\ , xm and y\---,yn for
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