ON THE ACTION OF A LOCALLY COMPACT GROUP ON E_n

F. J. HAHN

It is known [2, p. 208] that if a locally compact group acts effectively and differentiably on E_n then it is a Lie group. The object of this note is to show that if the differentiability requirements are replaced by some weaker restrictions, given later on, the theorem is still true. Let G be a locally compact group acting on E_n and let the coordinate functions of the action be given by $f_i(g, x_1, \dots, x_n)$, $1 \leq i \leq n$. For economy we introduce the following notation

$$Q_{ij}(g, t, x) = \frac{f_i(g, x_1, \cdots, x_j + t, \cdots, x_n) - f_i(g, x_1, \cdots, x_j, \cdots, x_n)}{t}$$

We denote by $\sigma(Q_{ij}(e, 0, x))$ the oscillation of $Q_{ij}(g, t, x)$ at the point (e, 0, x).

Before proceeding there is one simple remark to be made on matrices. If $A = (a_{ij})$ is an $n \times n$ matrix such that $|a_{ij} - \delta_{ij}| < (1/n)$ then A is non-singular. If A were singular there would be a vector x such that $\sum_i x_i^2 = 1$ and Ax = 0. From the Schwarz inequality it follows that $x_i^2 = (\sum_j (a_{ij} - \delta_{ij})x_j)^2 < (1/n)$ and consequently $1 = \sum x_i^2 < 1$ which is impossible. If $|a_{ij} - \delta_{ij}| \leq (\alpha/n)$, where $0 < \alpha < 1$, then the determinant of A is bounded away from zero since the determinant is a continuous function and the set $\{a_{ij}: |a_{ij} - \delta_{ij}| \leq (\alpha/n)\}$ is compact in E_{n^2} .

THEOREM 1. If T is a pointwise periodic homeomorphism of E_n then T is periodic.

Proof. [2, p. 224.]

THEOREM 2. If G is a compact, zero dimensional, monothetic group acting effectively on E_n and satisfying

$$(*) \qquad \qquad \sigma(Q_{ij}(e, 0, x)) < \frac{\varepsilon}{n}, \quad 0 < \varepsilon < 1, \quad for \ each \ x \ in \ E_n;$$

then G is a finite cyclic group.

Proof. Since G is monothetic, let a be an element whose powers are dense in G. It is enough to show that there is a power of a which leaves E_n pointwise fixed since the action of G is effective.

Received April 12, 1960. The author is a National Science Foundation Fellow.