SOME GENERALIZATIONS OF METRIC SPACES

JACK G. CEDER

1. Introduction. This paper consists of a study of certain classes of topological spaces (called M_1 -, M_2 -, and M_3 -spaces) which include metric spaces and CW-complexes and are included in the class of all paracompact and perfectly normal spaces. It is shown, for example, that like the case in metric spaces, a subset of an M_2 - (or M_3 -) space is an M_2 -(or M_3 -) space; a countable product of M_i -spaces (i = 1, 2, 3) is again an M_i -space; and separable is equivalent to Lindelöf in an M_i -space. Moreover, unlike the case in metric spaces, the quotient space obtained by identifying the points of a closed subset of an M_2 - (or M_3 -) space is again an M_2 - (or M_3 -) space (for metric spaces such a quotient space need not be first countable). Also, we have $M_1 \rightarrow M_2 \rightarrow M_3$, but whether $M_3 \rightarrow M_2$ or $M_2 \rightarrow M_1$ is unknown.¹

These classes of spaces are derived from generalizations of the following well-known characterization of metrizability in terms of specific properties of the base:

THEOREM 1.1. (Smirnov [14] or Nagata [12]). A regular space is metrizable if and only if it has a σ -locally finite base.

Recall that a σ -locally finite family is a union of countably many locally finite families. It is easily checked that a locally finite family U of sets has the property, called *closure preserving*, that for any

$$V \subset U$$
, $(\cup \{V \in V\})^- = \cup \{V \colon V \in V\}$.

This, then, suggests we consider spaces having a σ -closure preserving base (that is, a base which is the union of countably many closure preserving families).

DEFINITION 1.1. An M_1 -space is a regular space having a σ -closure preserving base.

Although conceptually simple, M_1 -spaces prove unsatisfactory in some respects, so we weaken the condition of having a σ -closure preserving base. We begin by calling a collection **B** of (not necessarily open!) subsets of X a quasi-base if, whenever $x \in X$ and U is a neighborhood of

Received June 12, 1959, resubmitted November 13, 1959. This paper represents part of the authors doctoral dissertation at the University of Washington, prepared under the guidance of Professor E. A. Michael, to whom the author wishes to express his gratitude for his advice and encouragement. The author is also indebted to Professor Jun-iti Nagata for some helpful correspondence.

¹ Nearly all topological terminology appearing in this paper is consistent with that used in Kelley [4]. Exceptions are that our regular, and normal spaces are assumed to be T_1 -spaces.