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l Introduction* This paper consists of a study of certain classes
of topological spaces (called Mx-, M2-, and Λf3-spaces) which include metric
spaces and CTf-complexes and are included in the class of all paracom-
pact and perfectly normal spaces. It is shown, for example, that like
the case in metric spaces, a subset of an M2- (or Λf3-) space is an M2-
(or ikf3-) space; a countable product of ikΓΓspaces (i = 1, 2, 3) is again
an ΛfΓspace; and separable is equivalent to Lindelof in an il^-space.
Moreover, unlike the case in metric spaces, the quotient space obtained
by identifying the points of a closed subset of an M2- (or M3-) space
is again an M2- (or MB-) space (for metric spaces such a quotient space
need not be first countable). Also, we have M1 —• M2 —> M3, but whether
M3 —• M2 or M2 —> Mλ is unknown.1

These classes of spaces are derived from generalizations of the
following well-known characterization of metrizability in terms of specific
properties of the base:

THEOREM 1.1. (Smirnov [14] or Nagata [12]). A regular space is
metrizable if and only if it has a σ-locally finite base.

Recall that a σ-locally finite family is a union of countably many
locally finite families. It is easily checked that a locally finite family
U of sets has the property, called closure preserving, that for any

Vcz U, (U{Fe F})-= U{F: Ve V} .

This, then, suggests we consider spaces having a σ-closure preserving
base (that is, a base which is the union of countably many closure
preserving families).

DEFINITION 1.1. An MΊ-space is a regular space having a σ-closure
preserving base.

Although conceptually simple, Mi-spaces prove unsatisfactory in some
respects, so we weaken the condition of having a σ-closure preserving
base. We begin by calling a collection B of (not necessarily open!) sub-
sets of X a quasi-base if, whenever x e X and U is a neighborhood of
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1 Nearly all topological terminology appearing in this paper is consistent with that used
in Kelley [4]. Exceptions are that our regular, and normal spaces are assumed to be 2V
spaces.
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