OPERATIONAL CALCULUS OF LINEAR RELATIONS

RICHARD ARENS

1. Introduction. Let X and Y be linear spaces, and T a linear subspace of $X \oplus Y$. We call T a linear relation to indicate our interest in those constructions with T which generalize those carried out when T is single-valued [4].

Properly many-valued linear relations arise naturally from operators T when T^{-1} or T^* is contemplated in cases where they are not single-valued. One advantage of not dismissing T^* when it is not single-valued is that $T^{**} = T$ if and only if T is closed (for the details, see 3.34, below.) A more superficial attraction is that linear relations, even self-adjoint linear relations in Hilbert space can exhibit phenomena (unbounded spectrum, domain $\neq X$) in finite-dimensional spaces which linear operators exhibit only in infinite-dimensional spaces.

We present an outline of the paper. In § 2 we define p(T) where p is a polynomial with coefficients in the field Φ involved in X. We prove that (pq)(T) = p(T)q(T), $(p \circ q)(T) = p(q(T))$, and point out that sometimes $(p+q)(T) \neq p(T) + q(T)$, etc.

In § 3 we turn to relations in dual pairs. In this situation, adjoints can be defined. We build an automorphism $\lambda \to \overline{\lambda}$ of \emptyset into the theory of dual pairs, so as not to *exclude* the Hilbert space situation, which dual pairs are intended to imitate. (Thus the transpose is a special kind of adjoint.) Closedness is defined algebraically, but in a way compatible with the topological concept. Closure of T^* and other algebraic properties of * are established. Finally, it is shown that if T is closed and its resolvent is not void then p(T) is also closed.

Section 4 considers the self-dual case. We give a simple condition (4.3) always true in Hilbert space, that T^*T be self-adjoint, T being closed. In § 5 we give the spectral analysis of self-adjoint linear relations in Hilbert space. In a 1:1 manner these correspond to the unitary operators, via the Cayley transform. However, it can be shown directly that X is the direct sum of orthogonal subspaces Y, Z which reduce $T (= T^*)$ giving in Z a self-adjoint operator and in Y the inverse of the zero-operator.

2. Linear relations. A relation T between members of a set X and members of a set Y is merely a subset of $X \times Y$. For $x \in X$, $T(x) = \{y : (x, y) \in T\}$. The domain of T consists of those x such that T(x) is not void. T is called single-valued if T(x) never contains more than one element. The range of T is the union of all T(x).