GENERALIZED TWISTED FIELDS

A. A. ALBERT

1. Introduction. Consider a finite field \Re . If V is any automorphism of \Re we define \Re_V to be the fixed field of K under V. Let S and T be any automorphism of \Re and define F to be the fixed field

$$\mathfrak{F} = \mathfrak{F}_q = (\mathfrak{R}_s)_T = (\mathfrak{R}_T)_s ,$$

under both S and T. Then \mathfrak{F} is the field of $q = p^{\alpha}$ elements, where p is the characteristic of \mathfrak{R} , and \mathfrak{R} is a field of degree n over \mathfrak{F} . We shall assume that

$$(2) n>2, q>2.$$

Then the period of a primitive element of \Re is $q^n - 1$ and there always exist elements c in \Re such that $c \neq k^{q-1}$ for any element k of \Re . Indeed we could always select c to be a primitive element of \Re .

Define a product (x, y) on the additive abelian group \Re , in terms of the product xy of the field \Re , by

(3)
$$(x, y) = xA_y = yB_x = xy - c(xT)(yS),$$

for c in \Re . Then

$$(4)$$
 $A_y=R_y-TR_{c(yS)}$, $B_x=R_x-SR_{c(xT)}$,

where the transformation $R_y = R[y]$ is defined for all y in \Re by the product $xy = xR_y$ of \Re . Then the condition that $(x, y) \neq 0$ for all $xy \neq 0$ is equivalent to the property that

$$c \neq \frac{x}{xT} \frac{y}{yS},$$

for any nonzero x and y of \Re . But the definition of a generating automorphism U of \Re over \Re by $xU=x^q$ implies that

(6)
$$S=U^{\beta}$$
, $T=U^{\gamma}$.

We shall assume that $S \neq I$, $T \neq I$, so that

$$(7) 0 < \beta < n , 0 < \gamma < n .$$

Then $xy[(xS)(yT)]^{-1} = z^{q-1}$, where

$$(8) 1-q^{\beta}=(q-1)^{\delta}, \ 1-q^{\gamma}=(q-1)^{\epsilon}, \ z=x^{\delta}y^{\epsilon}.$$

Received April 25, 1960. This paper was supported in part by an Esso Educational Foundation Grant and by NSF Grant G-9504.