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1. Introduction. In this note we begin by noticing that for any
commutative ring C, the isomorphism classes of finitely generated, pro-
jective C-modules of rank one (for the definition, see §2) form an abelian
group #(C) which reduces to the ordinary ideal class group if C is a
Dedekind domain. In [2], Auslander and Goldman proved that if #(C)
contains only one element then every automorphism of every central
separable C-algebra is inner. Using similar techniques, we prove that
for general C and for any central separable C-algebra A, #(C) contains
a subgroup isomorphic to the group of automorphisms of A modulo inner
ones. We characterize both this subgroup and the factor group. For
example, in the case of an integral domain or a noetherian ring, the
subgroup is the set of classes of projective ideals in C which become
principal in A (i.e., Ker 8 in Theorem 7). If C is a Dedekind ring and
A is the (split) algebra of endomorphisms of a projective C-module of
rank 7, the subgroup is the set of classes of ideals whose mth powers
are principal.

2. Generalization of the ideal class group. Let C be a commutative
ring' and let J be a projective C-module. Then for every maximal ideal
M in C, the module* J& C, is a projective, hence free, C,-module.
Following [7, § 3] we say J has rank one if for all M,J® Cy is free
on one generator,® i.e. JQ C, = Cy as C,-modules.

DEFINITION. _F(C) will denote the set of isomorphism classes of
finitely generated, projective, rank one C-modules. If J is a finitely

generated, projective, rank one C-module, {J} will denote the isomorphism
class of J.

We note that if {J}e #(C) then J is faithful, for if an ideal I
annihilates J then 0 = I(J® Cy) = IC,, = IQ Cy for every M, and so
I =0 [4, Chap. VII, Ex. 11].
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t All rings will be assumed to have units, all modules will be unitary, and if R is a
subring of S then R will contain the unit element of S. A homomorphism of rings will
preserve unit elements.

2 The unadorned ® always means tensor product over C. Cy denotes the ring of quo-
tients of C with respect to the maximal ideal M.

3 J® Cu = Cy for all M does not imply that J is either finitely generated or projective.
For example, let C be the ring of integers and J = UnC'pl'l...‘y;n-1 where p; is the ith prime.
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