AUTOMORPHISMS OF SEPARABLE ALGEBRAS

ALEX ROSENBERG AND DANIEL ZELINSKY

1. Introduction. In this note we begin by noticing that for any commutative ring C, the isomorphism classes of finitely generated, projective C-modules of rank one (for the definition, see § 2) form an abelian group $\mathcal{J}(C)$ which reduces to the ordinary ideal class group if C is a Dedekind domain. In [2], Auslander and Goldman proved that if $\mathcal{J}(C)$ contains only one element then every automorphism of every central separable C-algebra is inner. Using similar techniques, we prove that for general C and for any central separable C-algebra A, $\mathcal{J}(C)$ contains a subgroup isomorphic to the group of automorphisms of A modulo inner ones. We characterize both this subgroup and the factor group. For example, in the case of an integral domain or a noetherian ring, the subgroup is the set of classes of projective ideals in C which become principal in A (i.e., Ker β in Theorem 7). If C is a Dedekind ring and A is the (split) algebra of endomorphisms of a projective C-module of rank n, the subgroup is the set of classes of ideals whose nth powers are principal.

2. Generalization of the ideal class group. Let C be a commutative ring¹ and let J be a projective C-module. Then for every maximal ideal M in C, the module² $J \otimes C_M$ is a projective, hence free, C_M -module. Following [7, § 3] we say J has rank one if for all $M, J \otimes C_M$ is free on one generator,³ i.e. $J \otimes C_M \cong C_M$ as C_M -modules.

DEFINITION. $\mathcal{J}(C)$ will denote the set of isomorphism classes of finitely generated, projective, rank one *C*-modules. If *J* is a finitely generated, projective, rank one *C*-module, $\{J\}$ will denote the isomorphism class of *J*.

We note that if $\{J\} \in \mathscr{J}(C)$ then J is faithful, for if an ideal I annihilates J then $0 = I(J \otimes C_M) \cong IC_M \cong I \otimes C_M$ for every M, and so I = 0 [4, Chap. VII, Ex. 11].

Received August 7, 1960. Presented to the American Mathematical Society January 28, 1960. This paper was written with the support of National Science Foundation grants NSF G-4935 and NSF G-9508.

¹ All rings will be assumed to have units, all modules will be unitary, and if R is a subring of S then R will contain the unit element of S. A homomorphism of rings will preserve unit elements.

² The unadorned \otimes always means tensor product over C. C_M denotes the ring of quotients of C with respect to the maximal ideal M.

³ $J \otimes C_M \cong C_M$ for all M does not imply that J is either finitely generated or projective. For example, let C be the ring of integers and $J = \bigcup_n C p_1^{-1} \cdots p_n^{-1}$ where p_i is the *i*th prime.