TWO CLASSES OF DIOPHANTINE EQUATIONS

D. J. Lewis

1. Introduction. It is easily shown, by means of the Thue-Siegel-Roth theorem, that the equation

$$(1)$$
 $x^2+7M^2=N^y$, $M\geqq 1$, $N\geqq 2$

has only a finite number of nonnegative integral solutions x, y. Here we show that this equation cannot have more than 56MN integral solutions, and if (M, 7N) = 1, it cannot have more than 28N solutions. While these are reasonable upper bounds for the number of solutions, they are almost certainly excessively large. With appropriate assumptions on M and N we are able to obtain much smaller bounds.

Previously, Nagell [8] and others [9], [5] showed that the equation $x^2 + 7 = 2^y$ has exactly five solutions. We show that when N is an odd integer the equation $x^2 + 7 = N^y$ has at most two solutions and it has no solution unless N is an odd power of a prime.

In the second part of this paper we determine an upper bound, in terms of M and n, on the number of primitive solutions (i.e. x and y coprime) of the equation

$$(2)$$
 $x^2+7M^2=y^n$, $M\geqq 1$ and $n\geqq 3$.

In making our calculations, we make use of results which were obtained by means of a p-adic argument.

Nagell has shown that the equation $x^2 + D = y^n$ has at most one solution when D = 2 or 8 [7] and has no solution when D is a square free integer congruent to 1 or 2 (modulo 4) [6]. Ljungren [3], [4] has shown that this equation has at most one solution when $D = p^2$ (p a prime) or $D = 1 + 2^s t$ (s and t odd integers ≥ 3 .)

2. Notation. Let $K = Q(\sqrt{-7})$, where Q is the field of rational numbers. Let \mathfrak{D} be the set of algebraic integers in K, then \mathfrak{D} is a unique factorization ring having ± 1 as its only units. Let \mathfrak{S} denote the set of rational primes which split in \mathfrak{D} into the product of two non-associate conjugate primes. \mathfrak{S} does not contain $7 = (\sqrt{-7})(-\sqrt{-7})$. Let \mathfrak{F} be the set of rational primes not in $\mathfrak{S} \cup (7)$, then all integers in \mathfrak{F} are primes in \mathfrak{D} .

Set $\rho = \frac{1}{2}(1 + \sqrt{-7})$, then $2 = \rho \cdot \rho'$ and ρ is a root of the equation $z^2 - z + 2 = 0$. If p is in \mathfrak{S} , we write $p = \pi_p \cdot \pi'_p$.

If p is a rational prime and m is a rational integer, we write $||m||_{v}$ for the largest rational integer s such that $p^{s}|m$.

Received August 5, 1960. The author holds a National Science Foundation Fellowship.