CONTINUITY AND CONVEXITY OF PROJECTIONS AND
BARYCENTRIC COORDINATES IN CONVEX POLYHEDRA

J. A. KALMAN

If \(s_0, \ldots, s_n \) are linearly independent points of real \(n \)-dimensional Euclidean space \(\mathbb{R}^n \) then each point \(x \) of their convex hull \(S \) has a (unique) representation \(x = \sum_{i=0}^{n} \lambda_i(x)s_i \) with \(\lambda_i(x) \geq 0 \) (\(i = 0, \ldots, n \)) and \(\sum_{i=0}^{n} \lambda_i(x) = 1 \), and the barycentric coordinates \(\lambda_0, \ldots, \lambda_n \) are continuous convex functions on \(S \) (cf. [3, p. 288]). We shall show in this paper that given any finite set \(s_0, \ldots, s_m \) of points of \(\mathbb{R}^n \) we can assign barycentric coordinates \(\lambda_0, \ldots, \lambda_m \) to their convex hull \(S \) in such a way that each coordinate is continuous on \(S \) and that one prescribed coordinate (\(\lambda_0 \) say) is convex on \(S \) (Theorem 2); the author does not know whether it is always possible to make all the coordinates convex simultaneously (cf. Example 3). In proving Theorem 2 we shall use certain "projections" which we now define; these projections are in general distinct from those of [1, p. 614] and [2, p. 12]. Given two distinct points \(s_0 \) and \(s \) of \(\mathbb{R}^n \), let \(s_0s \) be the open half-line consisting of all points \(s_0 + \lambda(s - s_0) \) with \(\lambda > 0 \); given a point \(s_0 \) of \(\mathbb{R}^n \) and a closed subset \(S \) of \(\mathbb{R}^n \) such that \(s_0 \notin S \), let \(C(s_0, S) \) be the "cone" formed by the union of all open half-lines \(s_0s \) with \(s \) in \(S \); and given a point \(x \) in such a cone \(C(s_0, S) \), let \(\pi(x) \) be the (unique) point of \(s_0x \cap S \) which is closest to \(s_0 \). Then we shall call the function \(\pi \) the "projection of \(C(s_0, S) \) on \(S \)." Our proof of Theorem 2 depends on the fact that if \(S \) is a convex polyhedron then \(\pi \) is continuous (Theorem 1). This result may appear to be obvious, but it is not immediately obvious how a formal proof should be given; moreover, as we shall show (Examples 1 and 2), the conclusion need not remain true for polyhedra \(S \) which are not convex or for convex sets \(S \) which are not polyhedra. The author is indebted to the referee for improvements to Lemma 3, Example 1, and Example 2, and for the remark at the end of § 1.

1. Projections. For any subset \(A \) of \(\mathbb{R}^n \) we shall denote by \(H(A) \) the convex hull of \(A \) and by \(L(A) \) the affine subspace of \(\mathbb{R}^n \) spanned by \(A \) (cf. [2, pp. 21, 15]). If \(A = \{s_1, \ldots, s_p\} \) we shall write \(H(A) = H(s_1, \ldots, s_p) \) and \(L(A) = L(s_1, \ldots, s_p) \). Given two points \(x \) and \(y \) of \(\mathbb{R}^n \) we shall denote by \((x, y) \) the inner product of \(x \) and \(y \) and by \(|x - y| \) the Euclidean distance \(\sqrt{(x - y, x - y)} \) between \(x \) and \(y \).

Lemma 1. Let \(s_0 \) be a point of \(\mathbb{R}^n \), let \(S \) be a closed convex subset of \(\mathbb{R}^n \) such that \(s_0 \notin S \), and let \(\pi \) be the projection of \(C(s_0, S) \) on \(S \). Suppose that points \(x, s_1, \ldots, s_p \) of \(S \) and real numbers \(\lambda_1, \ldots, \lambda_p \) are...