A THEOREM ON REGULAR MATRICES

PETER PERKINS

In this paper it will be proved that if any nonnegative, square matrix P of order r is such that $P^m > 0$ for some positive integer m, then P^{r^2-2r+2} This result has already appeared in the literature, [2], but the following is a complete and elementary proof given in detail except for one theorem of I. Schur in [1] which is stated without proof. The term regular is taken from Markov chain theory¹ in which a regular chain is one whose transition matrix has the above property.

A *graph G^P* associated with any nonnegative, square matrix *P* of order r is a collection of r distinct points $S = \{s_1, s_2, \dots, s_r\}$, some or all of which are connected by directed lines. There is a directed line (indi cated pictorially by an arrow) from s_i to s_j in the graph G_P if and only if $p_{ij} > 0$ in the matrix $P = (p_{ij})$. A path sequence or path in G_P is any finite sequence of points of *S* (not necessarily distinct) such that there is a directed line in G_P from every point in the sequence to its immediate successor. The *length* of a path is one less than the number of occurrences of points in its sequence. A *cycle* is any path that begins and ends with the same point and a *simple cycle* is a cycle in which no point occurs twice except, of course, for the first (and last). Two cycles are *distinct* if their sequences are not cyclic permutations of each other. A nonnegative, square matrix P is regular if $P^m > 0$ for some positive integer m . Likewise, a graph G_P associated with a nonnegative square matrix *P* is *regular* if there exists a positive integer *m* such that an infinite set of paths $A_0, A_1, \cdots, A_n, \cdots$ can be found, the length of each path being $L_n = m + n$, $n = 0, 1, 2, \cdots$. The usual notation $p_{ij}^{(m)}$ is used to denote the *ijth* entry of the matrix *P^m .* In all that follows we shall consider only regular matrices P and their associated graphs G_P .

Some immediate consequences of these definitions and the definition of matrix multiplication are the following:

- (1) There is a path $s_{k_1} \cdots s_{k_{m+1}}$ in G_P if and only if $p_{k_1 k_{m+1}}^{(m)} > 0$ in P^m .
- (2) P is regular if and only if G_P is regular.
- (3) There exists some path from any point in G_P to any point in G_P .
- (4) For any given *i* and *j* there exists some *m* such that $p_{ij}^{(m)} > 0$.
- (5) If $P^m > 0$ then $P^{m+n} > 0$, $n = 0, 1, 2, \cdots$.

Let $C = \{C_1, C_2, \dots, C_t\}$ be all the distinct simple cycles of G_P and ${c_1, c_2, \dots, c_t}$ be the corresponding lengths.

Received November 21, 1960. I wish to thank Professor R. Z. Norman for his sugges tions in the writing of this paper.

¹ This is as treated by Kemeny and Snell in [3].