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1. Summary. This paper is concerned with showing that Chebyshev
inequalities obtained by the standard method are sharp. The proof is
based on relating the bound to the solution of a game. An optimum
strategy yields a portion of the extremal distribution, and the remainder
is obtained as a solution of the relevant moment problem.

2 Introduction. Let X be a random vector taking values in
J T c R\ and suppose t h a t Ef{X) = E(fx{X), , fr(X)) = (φ19 ---,<pr)

= ψ is given, where/,- is a real valued function on £f. For convenience,
we suppose fx = 1. An upper bound for P{X e J7~}, ^f c gf, may be
obtained as follows. If a = (alf , ar) e Rr and %jr is the indicator of
^ then af ^ χ.χ on gf implies P{Xe y^} ^ ag>', and if J ^ o = {α: af §
Z«r on <%?}, a "best" bound is given by

(2.1) P{XejT~} g inf aφf .

In general, a bound is called sharp if it cannot be improved. For
some cases, when J7" is assumed to be closed, the bound can actually
be attained by a distribution satisfying the moment hypotheses.

The main result of this paper is

THEOREM 2.1. Inequality (2.1) is sharp in the following cases.

( I ) X= (Xu . . . , Xk) with EXiXj or EX, and EXiXj given,
i,j = 1, ••-,&.

(II) X has range ( — oo, oo), [0, oo), or [0,1], and EX3 is given,
3 = 1, •• ,m.

(III) X is a random angle in [0, 2π) and the trigonometric moments
Eeίax, a = ± 1, , ± m are given.

Sharpness has been shown in ( I ) by Marshall and Olkin [6] when
J^~ is convex, and by Isii [3, 4] in the unbounded cases of ( II) . Sharp-
ness has also been proved in a number of specialized situations.

In § 3 the proof for ( I ) will be given in detail. The necessary
alterations for each of the remaining cases will be given in § 4, 5, 6, 7.
The solution of certain moment problems depend on conditions on Hankel
matrices, i.e., matrices of the form H= (hi+j), and some results concer-
ning these matrices are given in § 8.
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