THE SPECTRUM OF SINGULAR SELF-ADJOINT ELLIPTIC OPERATORS

KURT KREITH

This note deals with the Dirichlet problem for the second order elliptic operator

$$L = -rac{1}{r(x)}\sum_{i,j=1}^n rac{\partial}{\partial x_j} \Big(a_{ij}(x) rac{\partial}{\partial x_i} \Big) + c(x) \Big)$$

whose coefficients are defined in a bounded domain $G \subset E^n$. We suppose the following:

- (a) The $a_{ij}(x)$ are complex valued and of class C' in G; $a_{ij} \bar{a}_{ji}$.
- (b) c(x) is real valued, continuous, and bounded below in G.
- (c) r(x) is continuous and positive in G.
- (d) There exists a function $\sigma(x)$, continuous and positive in G satisfying

$$\sum_{i,j=1}^n a_{ij} \xi_i \overline{\xi}_j \ge \sigma \sum_{i=1}^n |\xi_i|^2$$

for all x in G and all complex n-tuples $\vec{\xi} = (\xi_1, \xi_2, \dots, \xi_n)$.

Under these assumptions it is easy to show that L is formally self-adjoint in the Hilbert space $\mathscr{L}^2_{\tau}(G)$ of functions which satisfy

$$\int_{{}^G}\!\!r\,|\,u\,|^{\scriptscriptstyle 2}\,dx<\infty\;.$$

We denote by $C_0^{\infty}(G)$ the set of infinitely differentiable functions with compact support in G. The operator L defined on $C_0^{\infty}(G)$ is a semibounded symmetric operator in $\mathscr{L}_r^2(G)$ and therefore has a Friedrichs extension which is self-adjoint in $\mathscr{L}_r^2(G)$. This operator, to be denoted by \overline{L} , will be referred to as the Dirichlet operator associated with Lon G. It is well known that \overline{L} is unique, has the same lower bound as the symmetric operator L, and that in sufficiently regular cases, \overline{L} can be obtained by imposing Dirichlet boundary conditions on the domain of L^* . The purpose of this note is to state a criterion for the discreteness of the spectrum of \overline{L} .

We shall say that the spectrum of an operator A is discrete if the spectrum of A consists of a set of isolated eigenvalues of finite multiplicity. The complex number λ belongs to the essential spectrum of A if there exists an orthonormal sequence $\{u_n\}$ it the domain of A for which $(A - \lambda I)u_n \to 0$. If A is self-adjoint, then it can be shown (see

Received December 6, 1960. This research was partially supported by a grant of the National Science Foundation NSF G 5010.