EXTENSIONS OF HOMOMORPHISMS

PAUL CIVIN

1. Introduction. A multiplication was introduced by R. Arens [1] [2] into the second conjugate space B^{**} of a Banach algebra, B, which made B^{**} into a Banach algebra. The algebra of the second conjugate space was studied by Civin and Yood [3], with particular attention given to the case where B was $L(\mathfrak{G})$, the group algebra of the locally compact abelian group \mathfrak{G} . Among the results they noted was that the algebra $M(\mathfrak{G})$ of finite regular Borel measures on \mathfrak{G} was isomorphic as an algebra with a quotient algebra of $L^{**}(\mathfrak{G})$. With \mathfrak{G} also a locally compact abelian group, P. J. Cohen showed [4, p. 220] that any homomorphism of $L(\mathfrak{G})$ into $M(\mathfrak{G})$ has an extension which was a homomorphism of $M(\mathfrak{G})$ into $M(\mathfrak{G})$.

In §3 we discuss the extensions of homomorphisms defined on a Banach algebra A into either the second conjugate algebra B^{**} of a Banach algebra B or certain of its quotient algebras. The result of Cohen quoted above is included in Theorem 3.7 when \mathfrak{G} and \mathfrak{H} are compact groups. In §4 we indicate, for compact \mathfrak{H} , a class of homomorphisms from $L(\mathfrak{G})$ into $M(\mathfrak{H})$, which are induced by homomorphisms of $L(\mathfrak{G})$.

2. Notation. The notation of Civin and Yood [3] is used throughout. If A is a Banach algebra, A^* , A^{**} , \cdots denote the various conjugate spaces of A. For $f \in A^*$, $x \in A, \langle f, x \rangle \in A^*$ is defined by $\langle f, x \rangle (y) =$ $f(xy), y \in A$. For $F \in A^{**}, f \in A^*, [F, f] \in A^*$ is defined by [F, f](x) = $F(\langle f, x \rangle), x \in A$. Also for $F \in A^{**}, G \in A^{**}$ the multiplication FG is defined in A^{**} by $FG(f) = F([G, f]), f \in A^*$.

For some purposes, Arens [2] also considers a second multiplication $F \cdot G$ defined for F and G in A^{**} in a manner similar to the above, except that at the first stage, $\langle f | x \rangle \in A^*$ is defined by $\langle f | x \rangle (y) = f(yx)$, $f \in A^*$, $x, y \in A$. Arens calls the multiplication in A regular provided that $F \cdot G = GF$ for all $F, G \in A^{**}$. Clearly, if A is commutative, then A^{**} is commutative if and only if the multiplication in A is regular. The same notation as above, in terms of bilinear functionals, is used in the sequel with respect to a multiplication in A^{****} which comes from the first of the above multiplications in A^{**} .

If π is the natural mapping of A into A^{**} , we say that a mapping φ defined on A^{**} into a set \mathfrak{S} is an extension of a mapping ρ defined on A into \mathfrak{S} if $\varphi(\pi x) = \rho(x)$ for $x \in A$.

For any subset \Im in A^* , we use the notation \Im^{\perp} for $\{F \in A^{**} | F(f) = 0, f \in \Im\}$.

Received December 12, 1960. This research was supported by the National Science Foundation, grant NSF-G-14, 111.