ON FUNCTION FAMILIES WITH BOUNDARY

JÓZEF SICIAK

1. Introduction. Let A be a family of real valued upper semi-continuous functions defined on a compact Hausdorff space E.

A closed set $F \subset E$ is called determining for A if every function $f \in A$ attains its maximum on F. If for the space E there exists one and only one minimal determining F = F(E, A) (i.e., a determining set such that no proper closed subset of it is determining), then F is called the boundary of E with respect to the family A.

A function $h \in A$ is called a barrier-function of A at a point $\overset{\circ}{x} \in F = F(E, A)$ if and only if $h(\overset{\circ}{x}) > h(x)$ for $x \neq \overset{\circ}{x}$, $x \in F$.

A point $\hat{x} \in F$ for which there is a barrier-function of A is called a semiregular boundary point of E with respect to A. If for a point $\hat{x} \in F$ there exists a continuous (at the point \hat{x}) barrier-function, then \hat{x} will be called a regular boundary point of E with respect to A.

Let D be a set contained in a topological space and let f(x) be a real function defined on D. Then the function f^* defined in the closure \overline{D} of D by means of

(1)
$$f^*(x) = \lim_{x' \to x} \sup f(x') , \qquad x' \in D, \ x \in \overline{D} ,$$

is called an upper regularization of f.

Let A_1 be a subfamily of A. Then the function

(2)
$$\varphi(x) = \{ \sup_{f \in A_1} f(x) \}^* , \qquad x \in E ,$$

is called the upper envelope of A_1 .

Let f be an upper semicontinuous nonnegative function defined in a compact set E. We shall denote by $||f||_E$ the maximum of f on E, $||f||_E = \max_{x \in E} f(x)$.

We say that a family A of functions f defined on E is separating (or A separates the points of E) if for any two points $x_1 \neq x_2$ of E there is a function $f \in A$ such that $f(x_1) \neq f(x_2)$.

A well known theorem of Silov [5] asserts: If A is a family of absolute values of all functions of a separating algebra of complex continuous functions defined on a compact Hausdorff space E, then E has the boundary F with respect to the family A.

This boundary is sometimes called a $\check{S}ilov\ boundary\ of\ E$ (with respect to the given algebra).

E. Bishop [3] has recently proved that if E is metrizable and A is a complete (with respect to the uniform convergence) Banach algebra

Received May 30, 1961. This paper was prepared partially under the sponsorship of NSF Grant 10375.