A NOTE ON THE PRIMES IN A BANACH ALGEBRA OF MEASURES

JAMES WELLS

1. Introduction. Let V denote the family of all finite complexvalued and conuntably additive set functions on the Borel subsets of $R_+ = [0 \infty)$ (hereafter called measures); $L^1(R_+)$ the set of all complexvalued functions on R_+ which are integrable in the sense of Lebesgue, identifying functions which are 0 almost everywhere; and A the elements in V which are absolutely continuous with respect to Lebesgue measure. For each $\mu \in V$ there exists an $f \in L^1(R_+)$ such that

(1.1)
$$\mu(E) = \int_E f(x) dx$$

for each Borel subset E of R_+ . And, conversely, if $f \in L^1(R_+)$ the set function μ defined by (1.1) is a measure.

We introduce a norm into V by the formula

(1.2)
$$|| \mu || = \sup \Sigma |\mu(E_i)| \qquad (\mu \in V),$$

the supremum being taken over all finite partitions of R_+ into pairwise disjoint Borel sets E_i . It is well known ([6], p. 142 or [7]) that V becomes a commutative Banach algebra under the convolution operation

(1.3)
$$\nu(E) = \int_0^\infty \mu(E-x) d\lambda(x) \qquad (\mu, \lambda \in V),$$

where E is any Borel subset of R_+ ; in symbols

(1.4)
$$\nu = \mu * \lambda$$
.

The Laplace-Stieltjes transform of $\mu \in V$ will be denoted by $\hat{\mu}$:

(1.5)
$$\hat{\mu}(z) = \int_0^\infty e^{-zz} d\mu(x) \qquad (Re(z) \ge 0) .$$

The relation (1.4) is equivalent to

(1.6)
$$\widehat{
u}(z) = \widehat{\mu}(z)\widehat{\lambda}(z)$$
 $(Re(z) \ge 0)$.

The *identity* in V is the measure u such that u(E) = 1 if $0 \in E$ and 0 otherwise. A measure μ is *invertible* provided there exists a measure μ^{-1} such that $\mu * \mu^{-1} = u$; and the measure λ is a *divisor* of the measure μ , in symbols $\lambda | \mu$, provided there exists a measure ν such that $\mu = \lambda * \nu$. It follows from basic properties of the Laplace-Stieltjes

Received December 4, 1961.