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l Introduction* Malcev algebras are a natural generalization of
Lie algebras suggested by introducing the commutator of two elements
as a new multiplicative operation in an alternative algebra [3]. The
defining identities obtained in this way for a Malcev algebra A are

(1.1) xy = ~yx

(1.2) xy xz = (xy z)x + (yz x)x + (zx x)y

for all x,y, z e A. Since Albert [1] has shown that every simple alter-
native ring which contains an idempotent not its unity quantity is either
associative or the split Cayley-Dickson algebra C, it is natural to see
if a simple Malcev algebra can be obtained from C. In [3] a seven
dimensional simple non-Lie Malcev algebra A* is obtained from C and
is discussed in detail. In this paper we shall prove the following

THEOREM. Let A be a finite dimensional simple non-Lie Malcev
algebra over an algebraically closed field of characteristic zero. Fur-
thermore assume A contains an element u such that the right multi-
plication by u, Ru, is not a nilpotent linear transformation. Then
A is isomorphic to A*.

The necessary identities and notation from [3] for any algebra A
are repeated here for convenience:

(x, y) — [x, y\—xy — yx

(x, y, z) = xy z — x yz

J(x, y, z) = xy z + yz x + zx y

for x,y,ze A. If h(xlf , xn) is a function of n indeterminates such
that for any n subsets B{ of A and b{ e B{, the elements hφlf •••, bn)
are in A, then h(Blf , Bn) will denote the linear subspace of A spanned
by all of the elements h(blf •••,&„).

For a Malcev algebra A of characteristic not 2 or 3, we shall use
the following identities and theorems from [3]:

(1.6) J{x, y, xz) = J(x, y, z)x

(1.3)

(1.4)

(1.5)

Commutator,

Associator,

Jacobian,
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