OPERATORS OF FINITE RANK IN A REFLEXIVE BANACH SPACE

A. Olubummo

1. Let X be a reflexive Banach space and F(X) the Banach algebra of all uniform limits of operators of finite rank, in X. Bonsall [1] has characterized F(X) as a simple, B^{\sharp} -annihilator algebra: F(X) contains no proper closed two-sided ideals, every proper, closed right (left) ideal of F(X) has a nonzero left (right) annihilator, and, given any $T \in F(X)$, there exists $T^{\sharp} \in F(X)$ such that

$$||T|| ||T^*|| = ||(TT^*)^n||^{1/n}, \qquad n = 1, 2, 3, \cdots.$$

In this note, we obtain a new characterization for F(X) (Theorem 3.2): a Banach algebra A is the algebra F(X) of all uniform limits of operators of finite rank in a reflexive Banach space X if and only if A is a simple, weakly compact, B^* -algebra with minimal ideals (A is weakly compact if left- and right-multiplications by every $a \in A$ are weakly compact operators). In the process of proving this result, we obtain a characterization of reflexive Banach spaces which seems to be of some independent interest (Theorem 2.2): a Banach space X is reflexive if and only if every operator in X of rank 1 is a weakly compact element of B(X).

2. Let X be a Banach space and B = B(X) the Banach algebra of all bounded operators in X with the uniform topology. For $T \in B$, let R_r denote the operator in B obtained by multiplying elements of B on the right by $T: R_r(A) = AT$ for $A \in B$.

Suppose that T is a fixed operator of rank 1 in X with $H = [x \in X: Tx = 0]$. Then H is a closed hyperplane in X and if x_0 is an element of X such that $Tx_0 \neq 0$, then $X = H \bigoplus (x_0)$ and we may assume that $||x_0|| = 1$. Write $B' = [S \in B: S(H) = (0)]$. For each $S \in B'$, we define an element x_s of X by setting $x_s = S(x_0)$. The mapping $S \to x_s$ is clearly linear.

LEMMA 2.1. The linear mapping $S \rightarrow x_s$ is a homeomorphism of B' onto X.

Proof. It is clear that the mapping is one-to-one and, since $||S(x_0)|| \leq ||S||$, it is continuous. It is also onto; in fact, let $\varphi \in X^*$ be such that $\varphi(H) = (0)$, $\varphi(x_0) = 1$. Then for given $x \in X$, the operator S_x defined by setting $S_x(y) = \varphi(y)x$, $y \in X$ belongs to B' and is mapped into x by the mapping $S \to S(x_0)$. Hence, by the closed graph theorem, the

Received November 9, 1961.