FURTHER RESULTS ON *p*-AUTOMORPHIC *p*-GROUPS

J. BOEN, O. ROTHAUS, AND J. THOMPSON

Graham Higman [3] has shown that a finite *p*-group, *p* an odd prime, with an automorphism permuting the subgroups of order *p* cyclically is abelian. In [1] a *p*-group was defined to be *p*-automorphic if its automorphism group is transitive on the elements of order *p*. It was conjectured that a *p*-automorphic *p*-group ($p \neq 2$) is abelian and proved that a counterexample must be generated by at least four elements. In this present paper we prove that a counterexample generated by *n* elements must be such that n > 5 and, if $n \neq 6$, then $p < n3^{n^2}$ (Theorem 3). We also show that the existence of a counterexample implies the existence of a certain algebraic configuration (Theorem 1). All groups considered are finite.

Notation. $\mathcal{P}(P)$ is the Frattini subgroup of the *p*-group *P* and *P'* is its commutator subgroup. $\Omega_i(P)$ is the subgroup generated by the elements of *P* whose orders do not exceed p^i . Z(P) is the center of *P*. F(m, n, p) denotes the set of *p*-automorphic *p*-groups *P* which enjoy the additional properties:

- 1. $P' = \Omega_1(P)$ is elementary abelian of order p^n .
- 3. $|P: \mathcal{O}(P)| = p^n$.

In [1] it was shown that a counterexample generated by n elements has a quotient group in F(m, n, p). Hence, in arguing by contradiction, we may assume that a counterexample P is in F(m, n, p).

Let $A = A(P) = \operatorname{Aut} P$ and let $A_0 = \operatorname{ker}(\operatorname{Aut} P \to \operatorname{Aut} P/\Phi(P))$. Thus $A/A_0 = B$ is faithfully represented as linear transformations of $V = P/\Phi(P)$, considered as a vector space over GF(p).

Since p is odd and cl(P) = 2, the mapping $\eta: x \to x^{p^m}$ is an endomorphism of P which commutes with each σ of Aut P. Since $\Omega_m(P) = \Phi(P)$, ker $\eta = \Phi(P)$, so η induces an isomorphism of V into W = P'. Since dim $V = \dim W$, η is onto.

The commutator function induces a skew-symmetric bilinear map of $V \times V$ onto W, (onto since P is *p*-automorphic) and since $\Phi(P) = Z(P)$, (,) is nondegenerate. Associated with (,) is a nonassociative product \circ , defined as follows: If $\alpha, \beta \in V$, say $\alpha = x\Phi(P), \beta = y\Phi(P)$, then [x, y] is an element of W which depends only on α, β , and so $[x, y] = z^{p^m}$ where the coset $\gamma = z\Phi(P)$ depends only on α, β . We write $\alpha \circ \beta = \gamma$. An immediate consequence of this condition is the statement that $\alpha \to \alpha \circ \beta$

Received December 6, 1961. Boen's work on this paper was partly supported by N.S.F Grant G-9504.