ASYMPTOTIC ESTIMATES FOR LIMIT POINT PROBLEMS

C. A. SWANSON

Introduction. The variation of characteristic values and functions of the differential operator L defined by

$$Lx = \frac{1}{k(s)} \left\{ -\frac{d}{ds} \left[p(s) \frac{dx}{ds} \right] + q(s)x \right\}$$

will be studied when the domain of L varies because of a change of boundary conditions. The *basic* interval is an open interval $\omega_{-} < s < \omega_{+}$ on which k is positive and piecewise continuous, p is positive and differentiable, and q is real-valued and piecewise continuous. For a closed subinterval [a, b] of the basic interval, our purpose is to obtain estimates for the characteristic values μ_{ab} and characteristic functions y_{ab} of regular Sturm-Liouville problems on [a, b] when a, b are near ω_{-}, ω_{+} . Such results have been obtained by the author [6] in the case that both ω_{-} and ω_{+} are limit circle singularities in H. Weyl's classification [2, p. 225]. Here the analogous results will be derived in the limit point case and the mixed case (one singularity of each type). To avoid repetition of the preliminary material in [6], we shall usually adhere to the notation and numbering system of [6] without further comment.

6. Basic problems in the limit point and mixed cases. As in §2, the limits of μ_{ab} as $a \to \omega_{-}, b \to \omega_{+}$ are supposed to exist, and accordingly we shall assume that characteristic values λ of suitable singular Sturm-Liouville problems for L on (ω_{-}, ω_{+}) exist. These singular problems are described as follows when both ω_{-}, ω_{+} are limit point singularities [4].

Let L_0 be the differential operator $L - l_0$, $Im \ l_0 \neq 0$. According to a theorem of Weyl [4, p. 45] there exist linearly independent solutions φ_-, φ_+ of $L_0\varphi = 0$ such that

(6.1)
$$\varphi_+ \in \mathfrak{F}_{\omega\omega_+}, \quad \varphi_- \in \mathfrak{F}_{\omega_-\omega}, \quad [\varphi_+ \overline{\varphi}_-](s) = 1$$

for any ω satisfying $\omega_{-} < \omega < \omega_{+}$. These solutions are uniquely determined from the normalization condition $[\varphi_{+}\varphi_{+}](s_{0}) = i$ at some point s_{0} , to remain fixed in the sequel. (Compare (6.1) with the choice (2.1) of φ_{-}, φ_{+} in the limit circle case.) Let \mathfrak{D}^{0} be the set of all xin the basic Hilbert space \mathfrak{H} (described in § 1) which have the following properties: (a) x is differentiable on (ω_{-}, ω_{+}) and x' is absolutely

Received August 1961. This research was supported by the United States Air Force through the Air Force Office of Scientific Research, under contract number AFOSR 61–89.