AN APPLICATION OF LINEAR PROGRAMMING TO PERMUTATION GROUPS

W. H. MILLS

Let S_N denote the symmetric group acting on a finite set X of N elements, $N \ge 3$. Let σ and τ be elements of S_N . In a previous paper [1] the following question was raised: If σ and τ commute on most of the points of X, does it necessarily follow that τ can be approximated by an element in the centralizer $C(\sigma)$ of σ ?

We define a distance $D(\sigma, \tau)$ between two elements σ and τ in S_N to be the number of points g in X such that $g\sigma \neq g\tau$. (This differs from the distance $d(\sigma, \tau)$ defined in [1] by a factor of N.) Then $D(\sigma\tau, \tau\sigma)$ is the number of points in X on which σ and τ do not commute. Let $D_{\sigma}(\tau)$ denote the distance from τ to the centralizer $C(\sigma)$ of σ in S_N . Thus

$$D_{\sigma}(\tau) = \min_{\lambda \in \mathcal{O}(\sigma)} D(\tau, \lambda)$$
.

It will be shown that the determination of $D_{\sigma}(\tau)$ is equivalent to the optimal assignment problem in linear programming.

The question raised in [1] can be phrased thus: If $D(\sigma\tau, \tau\sigma)$ is small, is $D_{\sigma}(\tau)$ necessarily small? If σ is not the identity we set

$$D_{\sigma} = \max_{\substack{ au \in \mathcal{G}(\sigma)}} D_{\sigma}(au) / D(\sigma au, au \sigma)$$
 .

Now D_{σ} is large unless σ is the product of many disjoint cycles, most of which have the same length. Some examples of this are worked out in detail in [1]. This leads us to study the case where σ is the product of m disjoint cycles of length n, where N = nm and m is large. In [1] it was shown that if $m \geq 2$, then

- (a) if n is even, then $D_{\sigma} = n/4$, and
- (b) if n is odd, $n \ge 3$, then
 - $(n-1)/4 \leq D_{\sigma} \leq n/4.$

In the present paper it is shown that if n is odd, $n \ge 3$, and $m \ge n-2$, then

$$D_{\sigma} = (n-1)^2/(4n-6)$$
.

1. Relation to linear programming. Let σ be an arbitrary element of the symmetric group S_N . We write σ as the product of disjoint cycles:

$$\sigma = C_1 C_2 \cdots C_m$$
 ,

Received October 22, 1962.