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Introduction. Let H be a Hubert space and P an operator with
| | P | | = 1. Our main problem is to find the weak limits of Pnx as
n —> co. This is applied to Markov Processes and to Measure Preserving
Transformations.

Markov Processes. Let (Ω, Σ, μ) be a measure space. Let xn be
a sequence of real valued measurable functions on Ω and:
1. μ(xn+a> eAΠ xm+* e B) = μ(xn eAf}xmeB).
2. Conditional probability that xke A given x{ and xjf i < j < k, is
equal to conditional probability that xke A given xJu

Let I(σ) denote the characteristic function of σ. Define P(n) by
linear extension of:

P(n) I(x0 e A) = Conditional probability that xne A given xQ.
Then:

2'. P(n) = P ( l ) \
For details see [1] and [2].

We will study limits of

(P(1Y I(x0 e A), I(x0 G B)) - jt£(a?Λ e A f] x0 e B) .

Many of the results here appear in particular cases in [1,] [2] and [3].

1. Reduction to unitary operators. For every x e H
a. ||p**pκp*χ - p*χ\\* ̂  2 | | P ^ | | 2 - 2Re{P*kPkPnxPnx)

| | 2 - | | P * + ^ | | 2 ) — 0

b. \\PkP*kPnx - P ^ | | 2 ^ ||P**P*P—*α> - P*-^ | | 2 — 0.
n->°°

Therefore:
If weak lim Pnix — y then P*kPky = pkp*ky = y (here and elsewhere
-Ui or mi will denote a subsequence of the integers). This means
| |y | | = | | P * y | | = | | P * * y | | β Notice that if P*Px = x then HPtf||2 =
{P*Px, x) = p | | 2 . On the other hand

||PaH|2 = (P*Px, x)^ | |P*P»II \\x\\ ^ P l l 2 since | | P | | = 1.
Hence if | |Pα?|| = ||aj|| then (P*Px, x) = | | P * P O J | | p | | and thus

P*Pα; = α.

THEOREM 1.1. Let K = {a?|||P*a?|| = ||P**a?|| = \\x\\ k = 1, 2, . •}
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