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This paper contains a solution of the following problem proposed
to me by Professor Burton Jones to whom it was given by Mr. Edgar
Emerson.

Problem. To show that the only integer solutions of

(1) y(y + 1) = x(x + l)(x + 2)

are given by

(2) x = 0, - 1 , - 2 , y = 0, - 1 ; x = 1, y = 2, - 3 , x = 5, y = 14, -15 .

Put
2y + 1 = Y, 2x + 2 = X .

Then

(3) 2Y2 = X 3 - 4 X + 2 .

Obviously X in (3) cannot be odd so it must be shown that the
only integer solutions of (3) are given by

(4) Z = 0 , ±2,4,12.

Diophantine equations of the form

(5) Ey2 = Ax" + Bx2+ Cx + D

where Af B, C, D, E are integers are well known. I proved1'2 in 1922
that the equation had only a finite number of integer solutions when
the right hand side had no squared factor in x. In fact, this followed
immediately from a result3 I proved in 1913, by quoting Thue's result
but which I did not know at that time. Finding these solutions may
be a troublesome matter, involving many details, and usually rather
difficult or even too difficult, to do.

One method requires a discussion of the field R{Θ) defined by

(6) Aθ* + Bθ2 + Cθ + D = 0 .
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