A NOTE ON UNCOUNTABLY MANY DISKS

JOSEPH MARTIN

R. H. Bing has shown [2] that E^3 (Euclidean three dimensional space) does not contain uncountably many mutually disjoint wild 2-spheres. J. R. Stallings has given an example [6] to show that E^3 does contain uncountably many mutually disjoint wild disks. It is the goal of this note to show that E^3 does not contain uncountably many mutually disjoint disks each of which fails to lie on a 2-sphere in E^3 . (A disk which fails to lie on a 2-sphere is necessarily wild.) For definitions the reader is referred to [1].

THEOREM 1. If V is an uncountable collection of mutually disjoint disks in E^3 then there exists a disk D of the collection V such that D lies on a 2-sphere in E^3 .

The proof of Theorem 1 follows immediately from the following three lemmas.

LEMMA 1. If V is an uncountable collection of mutually disjoint disks in E^3 then there exists an uncountable subcollection V^* of V such that if D belongs to V^* , x is an interior point of D, ax is an arc intersecting D only in the point x, and ε is a positive number then there exists an uncountable subcollection V_1 of V^* such that if D_1 is an element of V_1 then (i) $D_1 \cap ax \neq \phi$ and (ii) there is a homeomorphism of D_1 onto D which moves no point more than ε .

Proof. Let V be an uncountable collection of mutually disjoint disks in E^3 . Let V' denote the subcollection of V defined as follows: D is an element of V' if and only if there exist a point x of Int D, an arc ax intersecting D only in x, and a positive number ε such that there is no uncountable subcollection V_1 of V such that if D_1 belongs to V_1 then (i) $D_1 \cap ax \neq \phi$ and (ii) there is a homeomorphism of D_1 onto D which moves no point more than ε .

It is clear that in order to establish Lemma 1 it is sufficient to show that the collection V' is countable. Suppose that V' is uncountable.

For each element D_{α} of V' let an arc a_{α} and a positive number ε_{α} be chosen such that (i) the common part of D_{α} and a_{α} is an endpoint of a_{α} which is on the interior of D_{α} , and (ii) a_{α} intersects only a countable number of elements D of V such that there is a homeomorphism of D onto D_{α} which moves no point by more than ε_{α} .

Received January 15, 1963. This paper was witten while the author was a postdoctoral fellow of The National Science Foundation.