EQUALITY IN CERTAIN INEQUALITIES

MARVIN MARCUS AND APTON CAYPORD

1. Introduction. Let $\sigma = (\sigma_1, \dots, \sigma_n)$ be a point on the unit $(n-1)$ -simplex S^{n-1} : $\sum_{i=1}^{n} \sigma_i = 1$, $\sigma_i \geq 0$. Let $0 < \lambda_1 \leq \lambda_2 \leq \cdots \leq \lambda_n$ and $\mu_1 \geq \mu_2 \geq \cdots \geq \mu_n > 0$ be positive numbers and form the function. on S^{n-1}

(1.1)
$$
F(\sigma) = \sum_{i=1}^n \sigma_i \lambda_i \sum_{i=1}^n \sigma_i \mu_i.
$$

The main purpose of this paper is to examine the structure of the set of points $\sigma \in S^{n-1}$ for which $F(\sigma)$ takes on its maximum value. In case a convex monotone decreasing function f is fitted to the points $(\lambda_i, \mu_i)(i.e. f(\lambda_i) = \mu_i)$, $i = 1, \dots, n$, then it is not difficult to show that the maximum for $F(\sigma)$ on S^{n-1} is the upper bound given by M. Newman [4] in a recent interesting paper. In the case of the Kantorovich inequality [1] the function f is $f(t) = t^{-1}$, $\mu_i = \lambda_i^{-1}$, $i =$ 1, \cdots , *n*. In this case a maximizing σ is $\sigma_1 = 1/2$, $\sigma_n = 1/2$, $\sigma_i = 0$, $i = 2, \dots, n-1$, and if $\lambda_i < \lambda_k < \lambda_n$, $k = 2, \dots, n-1$, it is a corol lary of our main result (Theorem 2) that this is the only choice possible for $\sigma \in S^{n-1}$ in order to achieve the maximum value.

We shall assume henceforth in this paper that $\mu_i = f(\lambda_i)$, $i = 1$, \cdots , *n*, where f is a monotone decreasing convex function defined on the closed interval $[\lambda_1, \lambda_n]$. In 2 we determine the structure of the set of $\sigma \in S^{n-1}$ for which $F(\sigma)$ is a maximum in the case in which f is assumed to be strictly convex. In 3 we investigate the structure of the set of unit vectors *x* for which the function

$$
(1.2) \qquad \qquad \varphi(x) = (Ax, x)(f(A)x, x)
$$

assumes its maximum value on the unit sphere $\|x\| = 1$. Throughout, A is a positive definite hermitian transformation on an n -dimensional unitary space *U* with inner product *(x, y).* The eigenvalues of *A* are λ_i , $0 < \lambda_1 \leq \cdots \leq \lambda_n$, with corresponding orthonormal eigenvectors u_i , $Au_i = \lambda_i u_i, i = 1, \dots, n.$ Of particular interest in (1.2) is the choice $f(t) = t^{-p}, p > 0.$

Finally, in 4, we discuss the applications of the previous results to Grassmann compounds and induced power transformations associated with A. In two recent papers [2, 5] the Kantorovich inequality was applied to the compound to obtain inequalities involving principal subdeterminants of a positive definite hermitian matrix. We shall prove (Theorem 5) that these inequalities are in fact strict except in

Received October 30, 1962.